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Abstract. The detection of human-object interactions is a key component in
many applications, examples include activity recognition, human intention un-
derstanding or the prediction of human movements. In this paper, we propose a
novel framework to detect such interactions in RGB-D video streams based on
spatio-temporal and pose information. Our system first detects possible human-
object interactions using position and pose data of humans and objects. To counter
false positive and false negative detections, we calculate the likelihood that such
an interaction really occurs by tracking it over subsequent frames. Previous work
mainly focused on the detection of specific activities with interacted objects in
short prerecorded video clips. In contrast to that, our framework is able to find
arbitrary interactions with 510 different objects exploiting the detection capabil-
ities of R-CNNs as well as the Open Image dataset and can be used on online
video streams. Our experimental evaluation demonstrates the robustness of the
approach on various published videos recorded in indoor environments. The sys-
tem achieves precision and recall rates of 0.82 on this dataset. Furthermore, we
also show that our system can be used for online human motion prediction in
robotic applications.
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1 Introduction

The ability to detect interactions of humans with objects is of great use for a variety
of applications, especially for service robots. Examples include the identification of
customer browsing patterns in retail scenarios [8], activity recognition based on used
objects and monitoring of daily activities [15, 14], and, as we showed in our previous
paper, the prediction of human movements based on subsequent object interactions [1].
We now present a system that extracts such interactions from RGB-D streams. Most
work regarding interaction detection focuses on well-constrained scenarios often with
the goal to identify a small set of potential activities in prerecorded videos [10, 12]. In
this paper, we present a novel approach to detect and extract arbitrary human-object in-
teractions from video streams, which is based on spatio-temporal and pose information.
To achieve robustness, our framework verifies interactions found in one frame using
subsequent observations. In contrast to existing detection approaches, we do not assume
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Fig. 1: Our system detects human-object interactions based on object positions (purple) as well
as pose and orientation information of the human (green) (a). To deal with uncertainty in the
observations, we then compute for each found human-object interaction the likelihood that this
interaction really occurs using previous observations (b). In this example, the human interacts
with the coffee machine over several frames, resulting in a high likelihood for this interaction.

specific activities but allow for the detection of arbitrary human-object interactions with
510 different objects from the Open Image dataset [7]. Our framework focuses on video
streams, but can also be applied to static images or pre-recorded videos. We define a
human-object interaction as an action in which a human places at least one hand on an
object while facing it, see Fig. 1 for a demonstration. Our method detects relevant ob-
jects inside each frame using regional convolutional neural networks (R-CNNs) [3] and
estimates humans and their body pose using the OpenPose system [2]. We then detect
possible interactions based on the pose of the human and spatial information about hu-
mans and objects. To deal with uncertainty in the observations, our system computes for
each found interaction the likelihood that it really occurs by tracking it over subsequent
frames. The output of our framework is the set of all detected human-object interactions
with a sufficiently high likelihood. Fig. 1 illustrates the methodology of our approach.

As our approach is constrained by the types of recognizable objects our framework
is able to utilize a vast amount of available training data [7]. This allows us to recog-
nize any interaction with objects known by an interchangeable R-CNN. At the time of
publication, our system is able to detect interactions with 510 different objects. We will
publish the source code of our framework.

As we show in the experimental evaluation our system achieves recall and precision
rates of 0.82 with respect to the detection of human-object-interactions. We addition-
ally show the application of our system to predict human motions online and improve
existing motion prediction systems [1].

2 Related Work

The detection of interactions between humans and objects is closely intertwined with
activity recognition, as the type of the used object is typically associated with an activity.



An interesting work in this context is presented by Prest et al. [10]. The goal of
the authors is to detect smoking and drinking activities in realistic videos. To accom-
plish this, Prest et al. trained an action classifier on example interactions and use this
classifier in combination with a generic, part-based human detector [11] to spot the
previously learned interactions in a prerecorded video. The system tracks objects and
persons in space and time and uses the action classifier on the tracked data. In contrast
to our approach the application domain of this system is limited, as it is only able to
detect interactions with cigarettes and glasses. Similarly Yang et al. [14] proposed to
use object and interaction information to assign a predefined role, in their example kid-
napper and hostage, to a human. To detect human-object interactions, the authors apply
depth information and R-CNNs [3] and assume that an object is in use when it is very
close to a human in terms of position and depth. As interaction detection is primarily
done using position information obtained from an R-CNN, detection errors can easily
lead to wrong results. While our framework also uses an R-CNN, we additionally make
use of pose and spatio-temporal information to increase the robustness of the detection.

Several other related systems use static images rather than videos for example the
work by Yao et al. [15]. The authors use the assumption that objects are associated with
activities with the goal to increase object detection rates in static scenes by utilizing
information about pose and activities of humans. The work of Gupta et al. [5] follows
a similar idea. The authors propose a Bayesian model that incorporates functional and
spatial context for object and action recognition. Another approach that focuses on ac-
tion detection in static images was presented by Gkioxari et al. [4]. The authors detect
humans and objects with an R-CNN and estimate action-type specific densities to lo-
calize the used object. In most cases, this corresponds to the position of a hand of the
human.

In our work we use pose information [15, 5], especially about the hands of the hu-
man [4], alongside R-CNNs [3] to detect possible interactions in individual frames. We
then apply a verification step in the video stream to deal with false positive detections.
We extend the state of the art by allowing arbitrary interactions with known objects,
thereby shifting the focus from action recognition to the detection of human-object
interactions, allowing the use of a large amount of freely available training data [7].
Several applications can utilize the information provided by our framework ranging
from motion prediction, as we show in this work, to intention or activity recognition at
a larger scale.

3 Detection of Human-Object Interactions

Our goal is to detect all human-object interactions that occur in a video stream. We
define a human-object interaction as an action in which a human places at least one
hand on the object while facing it, see Fig. 1 for an illustration.

A video stream is a sequence of frames V = [f0, ..., ft] with f0 as the first observed
frame and ft as the currently observed frame at time t. Our approach uses the current
frame ft and all previously found interactions on [f0, ..., ft−1] as input and returns all
human-object interactions in V .



In summary, our approach to find all human-object interactions inside V works as
follows:

1. Apply an R-CNN to detect objects and the OpenPose system [2] to detect humans
and their poses from RGB data.

2. Use position and depth data to find overlaps between object bounding boxes and
human hand positions. Use pose information of the human to check whether they
are facing an object that overlaps with their hand, if so, record a possible interaction.

3. Update the likelihood of interactions based on the new observations. This step is
necessary to verify that a detected interaction really occurs.

The output of our system are all human-object interactions with a likelihood over
a threshold minL, which is determined using a training data set. A learning process
for minL is shown in our evaluation. An example video demonstrating our approach is
shown on our website 1.

3.1 Detection of Objects and Humans and Estimation of the Human Pose

To efficiently detect objects in the current frame we use an R-CNN from Google’s ob-
ject detection API [6], which was trained on the Open Images dataset [7]. Note that the
R-CNN is interchangeable and its object detection capabilities can be extended using
transfer learning techniques [9] in case new objects need to be detected. For the detec-
tion of humans and their poses we apply the OpenPose framework [2]. The estimated
pose directly contains information about the position of ears, eyes, nose, shoulders,
hands, and legs of the human. We further trained an estimator to classify the general
direction in which the human is oriented. We use as orientations with respect to the
point of view of the camera: right, left, back, and frontal. The estimation is based on
information about the visibility of the ears, eyes, nose and shoulders. During this step,
we used pre-existing systems. In the following, novel approaches are presented.

3.2 Detection of Possible Human-Object Interactions

Depending on the results of the orientation estimation we can infer which objects the
human is facing based on their x coordinates in the frame and depth levels with respect
to the human. In particular, our approach processes each detected object in the current
frame and checks whether the following conditions are satisfied for ft:

– The position of a human hand is inside the bounding box of the object.
– The human is facing the object.
– The depth level of the hand and the object are similar.

If an object fulfills all these conditions, a possible interaction of the human with this
object is recorded for ft.

1 https://www.hrl.uni-bonn.de/icsr_interaction_demo.mp4
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Fig. 2: Gamma probability density function (green) approximating the observed interaction dura-
tions (purple) in our real-world data set (a). Cumulative form of the gamma probability density
function (b) that indicates the probability that an interaction lasts for at most x seconds. Both
functions were modeled with k=5 and θ=0.9 .

3.3 Dealing With False Positive and False Negative Detections of Human-Object
Interactions

A common problem of human-object interaction systems are false positive object de-
tections [10], e.g., when image regions are wrongly classified as objects. Furthermore,
we observed in early tests of our framework a drop in the recall rates due to occlusions
while the human interacted with an object, e.g., while drinking from a cup. To deal with
such effects, we explicitly consider uncertain observations and compute the likelihood
of possible human-object interactions to estimate the probability that the interaction
really occurs based on their detection in subsequent frames.

To define the likelihood function, we evaluated the typical minimal length of human
interaction with an object on a training data set collected in an university setting. Most
interactions were shorter than 12 seconds. Longer interactions often last for several
minutes, e.g., working with a laptop. This results in a distribution with a significant
amount of data points during the first 12 seconds and very scattered data points for
longer durations. Using fitting techniques with common probability functions we found
that the gamma probability density function

G(x) =
1

Γ (k)θk
xk−1 exp(−x

θ
) (1)

with k=5 and θ=0.9 and Γ (a) as the gamma function [13], is a close approximation
to the data. The resulting distribution for the first 12 seconds is visualized in Fig. 2a. As
can be seen its fits the data points closely.



Given this distribution we compute the cumulative distribution function GC(x) of
G(x), which models the probability that an interaction has a duration of x or less sec-
onds

GC(x) =
1

Γ (k)
γ(k,

x

θ
) (2)

with γ(a, b) as the incomplete gamma function [13], see Fig. 2b for a visualization
of this cumulative distribution function.

Using GC(x), we determine the likelihoods of the detected possible human-object
interactions (see Sec. 3.2) using their estimated duration. In more detail, for an interac-
tion with a given object we say that a frame is a hit if an interaction with this object
was detected and a miss otherwise. To get the length of an interaction over several
frames we mark a hit as the start point of a new interaction if the elapsed time since
the last hit for this interaction is greater than a threshold tmax = 5 s. We determined
this value from GC(x) as 50% of the interactions are within a duration of 5 seconds.
Not detecting a single hit for a specific human-object interaction during this time is a
strong indication that no interaction with the object took place. First, each likelihood is
initialized with 0 for all objects in each frame. Then, we compute the likelihoods of all
detected interactions and possibly update the likelihoods of object interactions on pre-
vious frames where the interaction was not detected. Alg. 1 lists our complete approach
to compute the likelihood of an observed human-object interaction, with timeDiff (a, b)
as the time difference between a and b.

Input: Possible human-object interaction I on frame ft,
time of previous hit for I tphit , start time of I tstart .
Output: Likelihood L that I really occurred.
tdiff = timeDiff (t, tphit)
if tdiff > tmax then

//new interaction with this object
tstart = t

end
L = GC(timeDiff (t, tstart))
if (t− 1) < tdiff < tmax then

//false negative detections for I occurred
set likelihood of I in frames ftphit+1, · · · , ft−1 to L

end
tphit = t
return L

Algorithm 1: Likelihood computation.

4 Experimental Evaluation

We performed extensive experiments to demonstrate the robustness of our approach
with respect to precision and recall. Furthermore, we show the improvement that can



Fig. 3: Six example interactions from our evaluation dataset in different environments.

be achieved by computing the likelihood that an interaction is really happening by con-
sidering subsequent observations. In particular, we collected a dataset containing 195
human-object interactions of 10 different people with objects from the Open Image
dataset [7], over 27 minutes of video data. All videos were recorded with 12 frames per
second in indoor environments 2. Fig. 3 shows 6 example interactions from our dataset
in different environments.

We manually created the ground truth for each frame, i.e., the information which
human-object interactions are taking place.

4.1 Precision and Recall

We compare the output of our approach on each frame with the ground truth to compute
the recall and precision rates. We hereby perform the evaluation with respect to the
likelihood value minL from which on we assume our framework to be certain enough
to return a found interaction with an object. Fig. 4 shows the evolution of the precision
and recall for 100 different values of minL equally distributed in the range from 0 to 1.
The results were fitted with a function using least squares.

Using a minL value of 0.21 our framework is able to achieve recall and precision
rates of 0.82. Accordingly, in practice we use this as threshold for the likelihood as both
the recall and precision are relatively high. As can be seen in Fig. 2b this corresponds to
a minimal interaction length of approximately 2 seconds. Shorter minimal interaction
lengths are possible but would result in a high precision loss.

2 Videos from our dataset are availably under https://www.hrl.uni-bonn.de/
icsr2019



Fig. 4: Evolution of precision and recall rates of our approach with respect to different values of
minL. The precision rate strongly increases with higher minL values while the recall rate only
slowly decreases.

Increasing minL to a value close to 1 results in higher precision values up to 0.88
and lower recall values of 0.75. Decreasing minL on the other hand has the opposite
effect resulting in a precision rate of 0.62 and recall rate of 0.82 for a value of minL

close to zero. This evaluation clearly highlights the usefulness of the verification step
using the likelihood computation as it can significantly improve the returned precision
value while only slightly reducing the recall value. In general, values for minL between
0.2 and 0.6 seem to be a good compromise between high precision and recall rates.

False negative detections naturally happen at the start of an interaction since the
corresponding likelihood is initially low as the duration of the interaction is very short
at this point in time. False positive detections typically happen if objects are very close
together. In this case it is very difficult to differentiate between the interacted and the
passive object.

Comparison with the literature is difficult as the focus of most approaches that we
are aware of is activity recognition and not human-object interaction detection. The
most similar approach we found in the literature [10] lists recall values of 0.90 and
precision values of 0.62. It should also be noted that this system was only able to detect
interactions with 2 types of objects, while our approach is able to detect interactions
with 510 different objects.

4.2 Application to Human Motion Prediction

As demonstrated, our framework is able to robustly detect human-object interactions
in video streams. By applying the system online to the video stream recorded with
the camera of a real robot, the robot is able to predict human motions. To do so, we
first learn a distribution from collected data to represent the probability that after an
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Fig. 5: Example application of our approach to predict human movement goals. The robot (red)
detects a human-object interaction with a cup using our framework (a). Based on a pre-learned
probability distribution about interaction transitions, the likelihood of possible next interaction
objects is computed (b). The darker the green the higher the likelihood. Object names are abbre-
viated: table (T), sofa (S), refrigerator (R), coffee machine (C).

interaction with an object A the human will next interact with an object B. The robot
can then use this knowledge to predict future movement goals of the human based
on the known locations of objects in the environment when it detects human-object
interactions.

Fig. 5 shows an application example. In this scenario, the robot detects a human-
object interaction with a cup and computes based on an interaction model transition
probabilities to other known objects. The most likely next objects in this example are
sofas, tables, refrigerators, and coffee machines.

In our previous work3, we showed that such knowledge about subsequent object in-
teractions can improve the prediction of human motions compared to approaches which
rely on learned trajectories [1].

5 Conclusion

In this paper, we present a novel approach to automatically extract human-object inter-
actions from video streams. In comparison to existing frameworks, our system focuses
on the detection of general interactions with objects rather than specific activities. Fur-
thermore, we use spatio-temporal information to verify found interactions. We use an
R-CNN to detect objects and the OpenPose pose estimator [2] to detect humans and
their poses. Based on this information, we find human-object interactions on the cur-
rent frame and compute for each interaction the likelihood that it is really happening
based on subsequent observations.

As the experimental evaluation demonstrates, our approach is able to robustly detect
human-object interactions with recall and precision rates of 0.82 on our test dataset.

3 A video showing the capabilities of this approach can be found under https://www.hrl.
uni-bonn.de/icsr_application_demo.mp4
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