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A Pose Estimation Framework

Fig. 1. Our two-stage pose estimation framework. Each stage uses GoogleNet [1] as
the backbone. The features extracted by the backbone in the first stage are fed into
a deconvolution layer block to produce pose and joint offsets maps. The backbone
features, pose heatmaps and joint offsets maps from the first stage are fed into the
second stage to produce refined pose and joint offsets maps.

Our two-stage pose estimation framework is shown in Figure 1. Each stage uses
a GoogleNet [1] as the backbone. We use layer 1 to layer 17 for the backbone
of the first stage while for the second stage we use layer 3 to layer 17 only. The
features extracted by the backbone in the first stage are fed into a deconvolution
layer block to produce pose and joint offset maps. The backbone features, pose
heatmaps and joint offset maps from the first stage are fed into the second stage
to produce refined pose and joint offset maps.

Due to pooling used in the backbone, the resolution of the pose heatmaps
is reduced by a factor of 4 in height and width dimensions. Consequently, the
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Table 1. Impact of τcorr on mAP and MOTA on the PoseTrack 2017 validation set.

τcorr MOTA mAP

0.1 67.9 77.9
0.2 67.9 77.9
0.3 67.9 78.0
0.4 67.9 78.0
0.5 67.8 78.0

Table 2. Comparison of mAP and MOTA for different design choices on the PoseTrack
2017 validation set.

Design Choices MOTA mAP IDSW

Correspondence Tracking 67.9 78.0 3632
Correspondence Tracking w/o refinement module 66.9 77.7 4304
Correspondence Tracking w/o duplicate removal 64.5 77.9 8288

up-sampled predicted pose is slightly away from the actual pose. Towards this
end, we append a joint offset head to predict the deltas, i.e., ∆x and ∆y for each
keypoint. The position of the jth keypoint (x̂j , ŷj) at inference is computed as

(x̂j , ŷj) = (xj +∆xj , yj +∆yj). (1)

where (xj , yj) is the up-sampled position from the pose heatmaps. During train-
ing, we minimize the L1 loss between the predicted and ground-truth deltas for
the joint offset maps and use the binary cross entropy loss for the pose heatmaps.

B Impact of τcorr

We evaluate the impact of τcorr on the pose estimation and tracking performance.
As shown in Table 1, the threshold has a low impact. We use τcorr = 0.3 for all
our experiments.

C Effect of Refinement Module and Duplicate Removal

We evaluate the effect of the refinement module and duplicate removal on the
pose estimation and tracking performance. As shown in Table 2, omitting any of
the introduced design choices results in a significant drop in MOTA of at least
1%, and increases the number of identity switches (IDSW). Our proposed cor-
respondence refinement module improves the generated correspondence affinity
maps which results in stronger tracking results. This is reflected by the MOTA
and mAP scores that drop to 66.9 and 77.7, respectively, if we disable the re-
finement module. If duplicates are not removed, the MOTA and the mAP scores
drop to 64.5 and 77.9, respectively.
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D Track Merging

Fig. 2. Tack merging: For the start frame fq
s , the center frame fq

c and the last frame
fq
e of track T q, we estimate poses from keypoint correspondences in the start frame
fp
s of T p, as illustrated by the colored dashed lines. We use an OKS-based similarity

metric to measure the average pose similarity between the poses from correspondences
and the pose in the starting frame fp

s of track T p.

We propose a post-processing step in which we merge tracks of the same
pose instance at different time steps by utilizing keypoint correspondences from
multiple frames. Given two tracks T q and T p as illustrated in Figure 2, we select
three pose instances {Bq

f} with f ∈ {fqs , fqc , fqe } at the start, center and end

frames of track T q. For each of the pose instances Bq
f , we compute the pose

B̄q
f for the starting frame fps of track T p using correspondences, as described in

Section 5 of the paper. We then employ OKS as similarity metric and calculate
the average similarity between tracks T q and T p as

Smatch(T q, T p) =

∑
f∈{fs,fc,fe}OKS(B̄q

f , B
p
fp
s
)

3
. (2)

E Failure Cases

Existing person detectors sometimes output duplicate detections for the same
person. Such duplicate detections are hard to remove using non-maximum sup-
pression. In our experiments, they increase the number of false-positives (FP)
and lead to identity-switches. This impacts the overall tracking performance, as
the MOTA metric used in PoseTrack heavily penalizes FPs and IDSWs as shown
in Table 2. Figure 3 illustrates such failure cases.
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Fig. 3. Failure cases. Duplicates by the person detector lead to multiple tracks of the
same person and negatively impact the tracking performance.
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F Qualitative Results

Fig. 4. Qualitative results for recovering missed detections. Best seen using the zoom
function of the PDF viewer.
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