
1

A Hybrid RNN-HMM Approach for Weakly
Supervised Temporal Action Segmentation

Hilde Kuehne*, Alexander Richard*, and Juergen Gall, Member, IEEE

Abstract—Action recognition has become a rapidly developing research field within the last decade. But with the increasing demand
for large scale data, the need of hand annotated data for the training becomes more and more impractical. One way to avoid
frame-based human annotation is the use of action order information to learn the respective action classes. In this context, we propose
a hierarchical approach to address the problem of weakly supervised learning of human actions from ordered action labels by
structuring recognition in a coarse-to-fine manner. Given a set of videos and an ordered list of the occurring actions, the task is to infer
start and end frames of the related action classes within the video and to train the respective action classifiers without any need for
hand labeled frame boundaries. We address this problem by combining a framewise RNN model with a coarse probabilistic inference.
This combination allows for the temporal alignment of long sequences and thus, for an iterative training of both elements. While this
system alone already generates good results, we show that the performance can be further improved by approximating the number of
subactions to the characteristics of the different action classes as well as by the introduction of a regularizing length prior. The
proposed system is evaluated on two benchmark datasets, the Breakfast and the Hollywood extended dataset, showing a competitive
performance on various weak learning tasks such as temporal action segmentation and action alignment.

Index Terms—Weakly supervised learning, Temporal action segmentation, Temporal action alignment, Action recognition

F

1 INTRODUCTION

A CTION recognition has been a vivid and productive field
within the last decade. So far research in this area is mainly

focused on fully supervised classification of short, pre-clipped
video snippets as the progress on the major benchmarks in this
field shows [1], [2], [3], [4], [5]. But the collection of training data
for such systems is usually a cost and time consuming process.
Human annotators need to identify the specific classes in large
video collections and manually mark the start and end frame of
each corresponding action. This obviously makes it impractical to
cover a larger amount of action classes and does not necessarily
meet the preconditions of real live systems. This problem is further
aggravated by the need for large scale training data for most
deep learning approaches as shown by [5]. Additionally the costs
of training data collection make it hard to acquire enough data
to advance concepts beyond short clips e.g. towards long term
temporal models.

One way to address this issue is to give up on the need of
frame-based annotation and to use only action labels and their
ordering information to learn the respective action classes. This
information is much easier to generate for human annotators,
or can even be automatically derived from scripts [6], [7] or
subtitles [8]. First attempts to address this kind of problem have
been made by [8], [9], [10], [11].

In this context, we propose a hierarchical approach to address
the problem of weakly supervised learning of human actions from
transcripts. The method combines recognition in a coarse-to-fine
manner. On the fine grained level, we use a discriminative rep-
resentation of subactions, modeled by a recurrent neural network
as e.g. used by [12], [13], [14], [15]. In our case, the RNN is
used as basic recognition model as it provides robust classification
of small temporal chunks. This allows to capture local temporal

All authors are with the Institute of Computer Science III, University of Bonn,
Germany, *denotes equal contribution. E-mail: kuehne@iai.uni-bonn.de .

information. The RNN is supplemented by a coarse probabilistic
model to allow for temporal alignment and inference over long
sequences.

To bypass the difficulty of modeling long and complex action
classes, we divide all actions into smaller building blocks. Those
subactions are eventually modeled within the RNN and later
combined by the inference process. The usage of subactions allows
to distribute heterogeneous information of one action class over
many subclasses and to capture characteristics such as the length
of the overall action class. We show that automatically learning
the number of subactions for each action class leads to a notable
improved performance.

The obvious advantage of this kind of model is that it allows
recognition of fine grained movements by still capturing mid and
long temporal relations between frame responses. But the model
is also especially suitable for the task of weak learning because
it enforces a modular structure, as frame based responses are
first combined to action classes and then to activity sequences.
This allows for an iterative refinement of fine-grained and coarse
recognition as well as an alternating adaptation of both elements.

Our model is trained with an iterative procedure. Given the
weakly supervised training data, an initial segmentation is gen-
erated by uniformly distributing all actions among the video.
For each action segment, all subactions are uniformly distributed
among the part of the video belonging to the corresponding action.
This way, an initial alignment between video frames and subac-
tions is defined. In an iterative phase, the RNN is then trained on
this alignment and used in combination with the coarse model to
infer new action segment boundaries. From those boundaries, we
recompute the number of subactions needed for each action class,
distribute them again among the frames aligned to the respective
action, and repeat the training process until convergence.

To further improve the performance in this context, we extend
the standard HMM formulation by the introduction of a state

2

length prior during inference. The length prior serves as an
additional regulation to balance the temporal dynamic of the
system. The intuition underlying this concept is that actions are
usually not only characterized by their specific movements, but
also by the duration that is necessary to execute a certain task.
One way to include this characteristic in the proposed system is
to model the length of an action by the number of HMM states
used to represent the action. But we found that depending on the
observation prior, a number of states will aggregate all frames
of an action during inference, thus undermining the original idea
of representing variable length actions by adapting the number
of states only. Therefore, the proposed length prior serves as an
additional regularization factor to enforce a meaningful length
of the single states. We will show that the length prior helps to
prevent degenerated states during inference and thus to improve
recognition accuracy in general.

We evaluate our approach on two common benchmark
datasets, the Breakfast dataset [16] and the Hollywood extended
dataset [9], regarding two different tasks. The first task is temporal
action segmentation, which refers to a combined segmentation and
classification, where the test video is given without any further
annotation. The second task is aligning a test video to a given
order of actions, as proposed by Bojanowski et al. [9].

We regard those tasks with respect to different learning
settings. First, in the weakly supervised scenario, we use only
action labels and their ordering information to learn the respective
action classes. Second, we extend the task to a semi supervised
scenario by adding sparse frame-level annotation to the training
data as shown in [10]. In this case, which we refer to as semi-
supervised learning, a small fraction of the frames in the training
set is annotated with the respective action class. It shows that,
e.g. on Breakfast, using annotation of 0.25% of all frames (on
average one annotated frame per action instance) is enough to
improve the overall accuracy significantly. To put those findings
into context, we further evaluate the proposed system for the case
of fully supervised recognition of temporal sequences. It shows
that the sparse supervision on frame level is able to reach results
comparable to full supervision. Additionally, for all evaluated
cases the system is able to outperform any other state-of-the-art
approach so far.

A preliminary version of this work has been published in [17].
This work extends the previous approach by two main contribu-
tions. First, we extend the proposed model by the motivation and
introduction of a length model. We show how the length model
helps to regularize the training and inference of the temporal
model and that it outperforms the previous method as well as any
other state-of-the-art approaches. We further modify the proposed
training procedure to include sparse frame-level supervision to
the system. This allows us to address the case of semi-supervised
learning under sparse temporal supervision. Based on that, we not
only show that the system is able to outperform any other system
in this task, but we also demonstrate that the proposed length
model helps not only for the case of weakly supervised learning,
but also in case of semi- and fully supervised action recognition
in general.

2 RELATED WORK

Action recognition has come a long way within the last years,
moving forward from highly tuned hand-crafted features as pro-
posed by Wang et al. [1], [18] towards learned features and tempo-
ral connections as e.g. proposed by Simonyan and Zisserman [19],

Feichtenhofer et al. [20] and Wang et al. [4]. Recent approaches
show that results for classical action recognition are nearly ceiling
on standard datasets [5], [21]. Alternative approaches focus on
the learning of temporal sequences without full supervision. In
the following, we will first give an overview of concepts for
weakly supervised learning from sequential data as well as weakly
supervised fine-tuning with pretrained models. Finally, we will
review different scenarios in the context of duration modeling for
temporal sequences.

2.1 Weakly supervised learning from structured se-
quences

Compared to classical action recognition, the problem of weakly
supervised learning of actions is a rather new topic. First works in
this field, proposed by Laptev et al. [6] and Marszalek et al. [7],
focus on mining training samples from movie scripts. They extract
class samples based on the respective text passages and use those
snippets for training without applying a dedicated temporal align-
ment of the action within the extracted clips. Attempts for learning
action classes including temporal alignment on weakly annotated
data are made by Duchenne et al. [22]. Here, it is assumed that
video clips contain only one class and the task is to temporally
segment frames containing the relevant action from the back-
ground activities. The temporal alignment is thus interpreted as a
binary clustering problem, separating temporal snippets containing
the action class from the background segments. The clustering
problem is formulated as a minimization of a discriminative cost
function. This problem formulation is extended by Bojanowski
et al. [9] also introducing the Hollywood extended dataset. The
weak learning is formulated as a temporal assignment problem.
Given a set of videos and the action order of each video, the task
is to assign the respective class to each frame, thus to infer the
respective action boundaries. The authors propose a discriminative
clustering model using temporal ordering constraints to combine
classification of each action and their temporal localization in each
video clip. They propose the usage of the Frank-Wolfe algorithm
to solve the convex minimization problem. This method has been
adopted by Alayrac et al. [8] for unsupervised learning of task
and story lines from instructional video. Another approach for
weakly supervised learning from temporally ordered action lists
is introduced by Huang et al. [10]. Inspired by CTC models in
speech recognition [23], they use extended connectionist temporal
classification and introduce a visual similarity measures to prevent
the CTC framework from degeneration and to enforce visually
consistent paths. A different way, also lending on the concept
of speech recognition, is proposed by Kuehne et al. [11]. Here,
actions are modeled by hidden Markov models (HMMs) with
the aim to maximize the probability of training sequences being
generated by the HMMs, by iteratively inferring the segmentation
boundaries for each video and using the new segmentation to re-
estimate the model. The last two approaches were both evaluated
on the Hollywood extended as well as on the Breakfast dataset,
thus, these two datasets are also used for the evaluation of the pro-
posed framework. Another idea is proposed by Ding and Xu [24]
using a temporal convolutional feature pyramid network (TCFPN),
an adaption of the encoder-decoder temporal convolutional neural
networks (TCN) [25], for frame-wise classification in combination
with an iterative soft boundary assignment for the action sequence
alignment. During training, the alignment of the sequences to the
transcripts is refined by an insertion strategy, which means that

3

one class instance is represented by multiple successive instances
of the same class, allowing the temporal receptive field of the TCN
to extend in the temporal domain.

2.2 Weakly supervised fine-tuning
Other works focus on fine-tuning pretrained models by detecting
actions in untrimmed videos. Here, usually pretrained networks
are used to detect unseen actions in an untrimmed training set and
networks are fine-tuned with respect to the detected instances.
Note that classes in the datasets used for pretraining, such as
UCF101 [26], Sports1M [27] or Kinetics [28], can overlap with
the classes to search for in the untrimmed videos e.g. in case of the
Thumos action detection task [29]. There is further the information
given, which classes appear in the untrimmed videos, but not when
or how often they appear. This task was first addresses by Wang
et al. [30] by selecting clip proposals from a set of untrimmed
training videos to learn actions without exact boundary annotation.
Nguyen et al. [31] propose a combination of attention weights and
temporal class activation maps for the task.

2.3 Weakly supervised approaches in other domains
Koller et al. [32] integrate CNNs with hidden Markov models to
learn sign language hand shapes based on a single frame CNN
model from weakly annotated data. They extend the proposed
single frame model by including LSTMs for temporal correlation
in [33]. A more speech related task is also proposed by Malmaud
et al. [34], trying to align recipe steps to automatically generated
speech transcripts from cooking videos. They use a hybrid HMM
model in combination with a CNN based visual food detector to
align a sequence of instructions, e.g. from textual recipes, to a
video of someone carrying out a task. Gan et al. [35] learn action
classes from web images and videos retrieved by specific search
queries. They match images and video frames and use a regular-
ization over the selected video frames to balance the matching
procedure. [36] also takes weak video labels and noisy image
labels as input and generates localized action frames as output. The
localized action frames are used to train action recognition models.
Yan et al. [37] use video-level tags for weakly-supervised actor-
action segmentation using a multi-task ranking model to select
representative supervoxels for actors and their respective actions.
Finally, [38] propose an unsupervised technique to derive action
classes from RGB-D videos using Gibbs sampling for learning
long activities from basic action words.

2.4 Length modeling for temporal sequences
Bojanovski et al. [39] exploit a length model for weakly super-
vised video-to-text alignment. They regularize the length of the
video segments that are supposed to be aligned with the respective
description. Probably closest to the here proposed length prior is
the work of Richard et al. [40], which introduces a length model
that depends on the overall length of an action with respect to the
mean length of the recognized class. This model is able to capture
any discrete probability distribution and penalizes too short as
well as too long sequences. The problem of this formulation is
that the first-order dependence of the model leads to a quadratic
runtime in the inference and therefore becomes unfeasible for
longer temporal video data. The modeling of temporal duration
has also a long tradition in the context of speech processing and
has been used e.g. in [41]. Since then it has been used in different

contexts such as general modeling in case of explicit state duration
HMMs [42] but also for speech synthesis [43] or the generation
and decoding of temporal sequences, such as music [44].

3 TASK DESCRIPTION

3.1 Learning from transcripts only
In contrast to fully supervised action detection or segmentation
approaches, where frame based annotation is available, weakly
supervised learning is based on an ordered list of the actions
occurring in the video. A video of the activity “Making tea” might
consist of taking a cup, putting the teabag in it, and pouring water
into the cup. In a fully supervised task, a temporal annotation of
each action start and end time would be available for training, e.g.
in form of

0 - 21: take_cup
22 - 68: add_teabag
69 - 73: pour_water.

In our weakly supervised setup, all videos are just labeled with
their ordered action sequence given as

take_cup, add_teabag, pour_water.

As this information is available for each video and as long as
all actions appear at least once in different contexts, it is possible
to infer the related action boundaries without frame-based ground
truth information, in our case by choosing the related action
representation in a way that they maximize the probability that
the sequences were generated by the respective models.

Note that this also formulates the necessary preconditions of
the overall system, namely the fact that it needs the order of all
actions as they appear in the sequences of the training set and that
all actions need to appear at least with two different predecessors
and successors. This constrain is necessary as we want to max-
imize the probability that the sequences of the training data are
generated by models trained on a set of boundary assumptions.
If e.g. two actions always occur together and in the same order,
the combined probability for both models will be the same, no
matter where a boundary point is set between those two actions.
Only if one action appears in a different context, i.e. with different
predecessors and successors, we are able to maximize the overall
probability of the system with respect to different boundaries.

3.2 Learning from transcripts including sparse frame-
level annotation
A slightly modified version of this problem is the learning from
transcripts including sparse frame-level annotation. Here, again,
the transcripts are provided as described, but additionally a frac-
tion of the frames is also annotated with their respective ground
truth label. This setting is motivated by the idea that single frame
labels are usually easier to acquire than a full action segmentation.
It requires only to look at a few frames without the need to watch
the whole video. Such annotations can be collected e.g. via captcha
tasks, Mechanical Turk or in similar settings. In this case, the
annotation information for the video “Making tea” might look as
follows

take_cup, add_teabag, pour_water
frame 3: take_cup

frame 65: add_teabag.

4

The frame information does not refer to any action boundaries.
It only indicates at which position in the video a certain action
occurs. Thus, the task is still to infer the related action boundaries,
but under the additional constraint of matching the annotated
frames.

4 SYSTEM OVERVIEW

As sequential actions are naturally composed of hierarchical
movements and actions at different levels of temporal granularity,
we follow the idea of a hierarchical action model and adapt it for
the case of weak learning of human actions in video data.

At top level, we model each temporal sequence as a combi-
nation of basic actions. This can be an activity, as e.g. “Making
tea” which would be made up of the actions “take cup”, “add
teabag” and “pour water”. Each of those actions is represented by a
respective probabilistic graph model, in this case an HMM, which
models each action as a combination of subactions. Intuitively, the
idea of subactions is based on the fact that, e.g. an action such
as “take cup” consists of multiple movements like “move hand
towards cup”, “grab cup”, “move cup towards body” and “release
cup”.

The proposed model captures those implicitly available but not
explicitly annotated subactions as latent variables by the states in
the graph. In order to build the state graph, it is not necessary
to know the true number or label of the possible subactions.
Instead, we set the number of subactions relative to the length
of the corresponding action and update this factor as part of the
training. Thus subactions at the beginning of an action capture
motion patterns typical for that phase, as e.g. for “take cup” the
first subactions comprise elements such as “move hand towards
cup”. To ensure the sequential peculiarity of human actions within
the state graph, we use a feed-forward topology, allowing only
self-transition or transitions to the next state. We also show that
this characteristic can be further supported by introducing a state
specific length model to regularize the duration of each state
during inference.

In the following, we describe the proposed framework in
detail, starting with the formal definition of the hierarchical action
model. After that, we discuss the different elements of our model,
the fine-graind subaction classification and the length prior in
detail. Next, we describe the inference and training procedure for
the weak as well as for the semi supervised case and close with a
discussion of the chosen stop criterion.

4.1 Hierarchical action model
As already stated, our training data consists of a set of videos
and their respective transcripts, indicating the occurring actions in
the correct order. Formally, we can assume the training data is a
set of tupels (xT1 ,a

N
1), where xT1 = (x1, . . . , xT) are framewise

features of a video with T frames and aN1 is an ordered sequence
(a1, . . . , aN) of actions occurring in the video. The segmentation
of the video is defined by the mapping

n(t) : {1, . . . , T} 7→ {1, . . . , N} (1)

that assigns an action segment index to each frame. Initially, this
can simply be a linear segmentation of the provided actions, see
Figure 5a. The likelihood of an action sequence xT1 given the
action transcripts aN1 is then defined as

p(xT1 |aN1) :=
T∏

t=1

p
(
xt|an(t)

)
, (2)

where p(xt|an(t)) are probabilities of frame xt being generated
by the action an(t).

The action classes usually describe longer, task-oriented proce-
dures that naturally consist of more than one significant movement
and we want to efficiently capture those characteristics. We model
each action as a sequential combination of subactions. For each
action class a, a set of subactions s(a)1 , . . . , s

(a)
Ka

is defined. The
number Ka is initially estimated by a heuristic and refined during
the optimization process. Practically, this means that we subdivide
the original long action classes into a set of smaller subactions. As
subactions are obviously not defined by the given ordered action
sequences, we treat them as latent variables that need to be learned
by the model. In the following system description, we assume
that the subaction frame boundaries are known, e.g. from previous
iterations or from an initial uniform segmentation (see Figure 5b),
and discuss the inference of concrete boundaries in Section 4.3.

In order to combine the fine grained subactions to action
sequences, a hidden Markov model Ha for each action a is
defined. The HMM ensures that subactions only occur in the
correct ordering, i.e. that s(a)i ≺ s

(a)
j for i ≤ j. More precisely,

let

s(t) : {1, . . . , T} 7→ {s(a1)1 , . . . , s
(aN)
KaN
} (3)

be the known mapping from video frames to the subactions of the
ordered action sequence aN1 . This is basically the same mapping
as the one in Equation (1) but on subaction level rather than on
action level. When going from one frame to the next, we only
allow to assign either the same subaction or the next subaction, so
if at frame t the assigned subaction is s(t) = s

(a)
i , then at frame

t+1 either s(t+1) = s
(a)
i or s(t+1) = s

(a)
i+1. In the following,

we will denote s(t) by the subscript st for better readability.
The likelihood of an action sequence xT1 given the action

transcripts aN1 is then given by

p(xT1 |sT1) :=
T∏

t=1

p
(
xt|st

)
· p
(
st|st−1

)
, (4)

where p(xt|s) are probabilities computed by the fine-grained
subaction model, see Section 4.2. As defined by the feed forward
model, the transition probabilities p(st|st−1) can model a self-
transition or a transition from subaction s′ to subaction s. In
both cases, we compute the relative frequencies of how often the
transition s′ → s occurs by regarding the st-mappings of all
training videos.

4.2 Fine-grained Subaction Model

For the classification of fine-grained subactions, we use an RNN
with a single hidden layer of gated recurrent units (GRUs) [45],
a simplified version of LSTMs that shows comparable perfor-
mance [46], [47] also in case of video classification [48], but
has less parameters than an LSTM unit. The network is shown
in Figure 1. For each frame, it predicts a probability distribution
over all subactions, while the recurrent structure of the network
allows to incorporate local temporal context. Since the RNN
generates a posterior distribution p(s|xt) but our coarse model
deals with subaction-conditional probabilities, we use Bayes’ rule
to transform the network output to

p(xt|s) = const · p(s|xt)
p(s)

, (5)

5

input: video xT
1

x1 x2 . . . xT

GRU GRU . . . GRU

p(s|x1) p(s|x2
1) . . . p(s|xT

1)

targets: subaction labels

Fig. 1. RNN using gated recurrent units with framewise video features as
input. At each frame, the network outputs a probability for each possible
subaction while considering the temporal context of the video by the
preceding frames.

s(t)

A
(
s(t)

)

s
(a1)
1 s

(a1)
2

action 1

s
(a2)
1 s

(a2)
2 s

(a2)
3 s

(a2)
4 s

(a2)
5

action 2

s
(a3)
1 s

(a3)
2

action 3

Fig. 2. Example for the extractor function A. During inference, a frame-
to-subaction alignment st is found. To compute the respective unique
action sequence. the extractor function maps the subactions back to its
respective action classes.

and thus allows for a direct usage of the distributions generated by
the recurrent network in Equation (4).

As recurrent neural networks are usually trained using back
propagation through time (BPTT) [49], which requires to process
the whole sequence in a forward and backward pass and a video
can be very long and may easily exceed 10, 000 frames, the com-
putation time per minibatch can be extremely high. We therefore
adapt the training procedure by using small chunks around each
video frame. They can be efficiently processed with a reasonably
large minibatch size in order to enable efficient RNN training on
long videos. For each frame t, we create a chunk over x[t− 20, t]
and forward it through the RNN. While this practically increases
the amount of data that needs to be processed by a factor of 20,
only short sequences need to be forwarded at once and we benefit
from a high degree of parallelism and comparable large minibatch
size.

4.3 Inference

To make use of the so far computed fine-grained subaction
probabilities for long term recognition, we need to combine them
over time to derive the underlying action classes as well as the
overall temporal sequence. To do so, we use a temporal inference
model, based on the hierarchical model formulation of our system.
We will now discuss the inference on action and video level. Here
different constraints can be applied. We first discuss the case of
inference constrained by a grammar. Second, we consider the
inference with given transcripts as a special case of a grammar
with just one valid path. Third, we extend both modalities for
sparse frame-level annotation.

a(τ1) a(τ2) a(τ3)

Frame annotations

Viterbi segmentation
a1 a2 a3 a4

Adjusted boundaries

Fig. 3. Boundary adjustment for semi-supervised training with sparse
frame annotation. If the annotated frames are not consistent with the
result after Viterbi decoding, the segmentation needs to be adjusted
to fit the annotated frames. This also includes the association of the
annotated frames to the respective segments. In this example, a(τ2)
and a(τ3) both belong to the same class and could be associated to
segment a2 and a4. Using a dynamic warping approach, boundary shifts
are chosen to be as small as possible.

Inference with grammar. Given a video xT1 we want to find the
most likely action sequence

âN1 = argmax
aN1

p(xT1 |aN1) (6)

as well as the corresponding frame alignment. In order to limit
the amount of action sequences to optimize over, a context-free
grammar G is created by accumulating all action transcripts seen
in the training data as in [11]. Instead of finding the optimal action
sequence directly, the inference can equivalently be performed
over all possible frame-to-subaction alignments st that are con-
sistent with G. Consistent means that the unique action sequence
defined by st is generated by G.

To receive the respective action sequence âN1 , we need to map
the subaction output back to their original action classes. To this
end, we define an extractor function A : s(t) 7→ aN1 that maps
the frame-to-subaction alignment st to its action sequence, see
Figure 2 for an illustration. Then, Equation (6) can be rewritten as

âN1 = argmax
st:A(st)∈L(G)

{ T∏

t=1

p
(
xt|st

)
· p
(
st|st−1

)}
, (7)

where L(G) is the set of all possible action sequences that can
be generated by G. Equation (7) can be solved efficiently using a
Viterbi algorithm if the grammar is context-free, see e.g. [50].

Note that we have two types of transitions, namely transitions
between subactions of the same class, i.e. A(st−1) = A(st),
as well as transitions between two action classes, i.e.
A(st−1) 6= A(st). The transition probability p(st|st−1) for two
subactions of the same action class can be computed from the
current alignment of the training data. As we use a feed-forward
model, we only allow self-transitions, i.e. st = st−1, or transitions
to the next state. The probability p(st|st−1) is computed by
counting the respective number of transitions for the given training
alignment. The transition probability between actions is 1 if the
transition encodes a viable path in the grammar and 0 if not.

Inference with transcripts. For training as well as for the task
of aligning videos to a given ordered action sequence, the sequence
of occurring actions aN1 is already known and only the best frame
alignment to a single sequence needs to be inferred. By defining
a grammar that generates the given action sequence aN1 only, this
alignment task can be solved using Equation (7).

Inference with transcripts and sparse frame-level annotation.
For the case that not only the transcripts but also sparse frame level
annotation is available, the additional information is incorporated

6

as additional guiding points, see Figure 3 for an illustration. The
problem is that the guiding points only comprise the label for a
specific frame, but do not include a matching of this frame to a
certain segment in the transcripts. Thus, if the respective action
occurs more than once, the frame can be assigned either way. To
solve this assignment problem, we use a dynamic programming
approach that assigns all labeled frames to their next matching
action segment. We formulate a distance function of the inferred
sequence aN1 and an ordered set of F frame labels (τ, a(τ))
which consists of frames indices τ and the respective class label
a(τ). We further denote the respective start and end frame of
the n-th segment of the Viterbi segmentation by start(an) and
end(an). We assume that the respective segments have been
found by the Viterbi algorithm as described before. The distance
function between the current alignment and the sparse frame-level
annotation is then given by

d(τ, an) =

0, a(τ) = an ∧
τ ∈ [start(an), end(an)],

start(an)− τ, a(τ) = an ∧
τ < start(an),

τ − end(an), a(τ) = an ∧
τ > end(an)

∞, a(τ) 6= an,

(8)

i.e. if the annotated frame τ lies within the n-th inferred segment
and has the same label, a(τ) = an, the distance is zero (e.g. a(τ1)
and a1 in Figure 3). If the annotated frame lies outside segment n
but has the same action label, the distance is the number of frames
it needs to be moved to lie within the n-th segment (e.g. a(τ2)
and a2 in Figure 3). If the annotated frame has another label than
segment n, i.e. a(τ) 6= an, the distance is infinity (e.g. a(τ2) and
a3 in Figure 3).

We minimize the respective distance function over all annota-
tions for each video:

min
n(τ):{1,...,F}7→{1,...,N}

{
F∑

i=1

d(τi, an(τi))

}
, (9)

where F indicates the total number of framewise annotations. The
minimization is reached by a dynamic warping approach. The
resulting mapping n(τ) from labeled frames to action segments
provides the assignment between frame annotations and Viterbi
segments that requires the boundaries to be moved as little as
possible.

For all setups with sparse frame-level supervision, we follow
a two step procedure. Given the training videos as well as the
respective transcripts and labels, we first infer the best path
based on the transcripts and in a second step align the resulting
boundaries with the given labeled frames.

4.4 Length prior
We further add a state specific length prior as an additional
regularization factor to our state model. The length prior serves
in this case as a temporal decay model that rewards the model
at the beginning of a new state to stay in this state for a certain
amount of frames and punishes the model if it stays too long in the
same state. The idea is motivated by the observation that, without
length prior, the system tends to skip many states, only remaining

Example for state-alignment
without length prior:

2 1 2 43 2

1 44 1 3 1

Example for desired
state-alignment:

12 3 15 19 1

Fig. 4. Example of state alignment for two instances of the same action
as they are usually produced by the system without length prior and of
an instance showing the intended state alignment. In the first two cases
the HMM does not model the temporal progression, but rather uses the
subaction states to distinguish between different action appearances.

in those states for one or two frames. An example of this behaviour
is shown in Figure 4. It is clear to see that the HMMs in this case
do not model any temporal progression. To evaluate this behaviour
further, we counted the so called skip states, i.e. states which are
only assigned to one frame, for the case without and with length
prior. We observe that without length prior 74.6% of all processed
states can be counted as skip states whereas the introduction of the
length prior, e.g. for the best performing configuration reported in
Section 6, reduces the amount of skip states to 61.9%.

Formally, the length prior is a function of the duration of a
state s at position t in the overall state-to-frame alignment, i.e.
a function of the length lt(st) that captures how long the model
already remained in one state at time t. The length function is
defined recursively as

lt(st) =

{
lt−1(st) + 1, if st = st−1
1, otherwise

. (10)

The prior function p
(
lt(st)|st

)
models the decay factor based

on the mean length len(st) of the respective state. The mean
length is given by the average length of each state computed as

len(s) =
number of frames aligned to s

number of s-instances
. (11)

An example for such a decay function can be a half Gaussian
function defined as

p̃
(
lt(st)|st

)
= e−

(lt(st)−µ)2

σ2 (12)

with µ = 0 and σ = len(st), see Figure 8 and the Appendix for
more decay functions.

4.5 Decoding with Length prior

The Viterbi decoding is a recursive function that computes the best
path by maximizing the probability of all recent paths, encoded
as a set of states, in combination with the probability of the
current states. More formally, we define the recursive function
Q to encode the maximum probability for a state path s at time

7

t. In the following, we define s′ to be a possible predecessor state
at time t − 1 and Q at (t − 1, s′) is the maximum probability of
the HMM state path up to time t − 1. The value of Q at (t, s) is
then computed by selecting the HMM state path up to time t that
ends in state s that maximizes the probability over all predecessor
paths multiplied by the current observation probability p(xt|s) and
the transition probability from the previous to the current state
p(s|s′). This recursive equation solves the maximization from
Equation (7),

Q̃(t, s) = max
s′

{
Q(t− 1, s′) · p(xt|s) · p(s|s′)

}
. (13)

Consequently, the overall best path by means of Equation (7)
is the best path ending at time T , i.e. the path with the score
maxsQ(T, s), see also [51] for details.

We propose to use the length prior p
(
lt(st)|st

)
as a regularizer

during the Viterbi decoding to prevent hypotheses that stay in the
same HMM state for too long. To this end we add the length prior
to the overall decoding formulation

âN1 = argmax
st:A(st)∈L(G)

{ T∏

t=1

p
(
xt|st

)
· p
(
st|st−1

)
· p
(
lt(st)|st

)}
,

(14)

As the Viterbi decoding is carried out recursively, cf. Equa-
tion (4.5), the previously multiplied length factor needs to be
replaced by the current length factor when going from frame t−1
to frame t. Therefore the overall prior is defined as

p
(
lt(st)|st

)
=

p̃
(
lt(st)|st

)

p̃
(
lt−1(st)|st−1

) , (15)

where we set p̃
(
lt−1(st)|st−1

)
= 1 if st 6= st−1.

In order to incorporate a regularization on the length, we
modify the recursive equation by multiplying the length prior,

Q̃(t, s) = max
s′

{
Q(t− 1, s′) · p(xt|s) · p(s|s′)

· p
(
lt(st)|st

)}
. (16)

Note that the length prior here works differently from context
dependent length models as e.g. proposed in [40]. Such length
models assume a first-order dependence on the ending times of
the single states. Including such a length model might allow for an
even more precise length modeling but would require the Viterbi
decoding to run not only over all time frames but also over all
possible lengths, which would increase the runtime from linear
in the frames, i.e. O(T), to quadratic in the frames, i.e. O(T 2).
Since videos are usually long (T � 1000), this quickly becomes
infeasible to compute.

The main advantage of the here proposed length prior is that it
only depends on the current length lt(st), which is also recursively
defined and keeps the overall runtime linear. This formulation re-
quires the length prior to be a monotonically decreasing function.
Consider a path that, at time t, has just changed to state s. A
non-monotonous function such as a classical Poisson distribution
would penalize such a path strongly, although the path may turn
out very good if it stays in state s in the future. Using monotonous
length priors avoids this problem and only paths that are in a
certain state s for too long are penalized. We define functions such
as a half Poisson, where the probability is constant up to the peak
of the original Poisson distribution and then decreases as usual.
Similarly, we propose a half Gaussian that is centered at zero and

decreases as the length increases like a Gaussian distribution, see
Figure 8 and the Appendix for details.

We evaluate the four different models, namely a box function,
a linear decreasing function, a half Poisson, and a half Gaussian
distribution in Section 6.3.

4.6 Training

The training of the model is done iteratively, altering between the
recurrent neural network and the hidden Markov model training,
and the alignment of frames to subactions via the hidden Markov
model. The whole process is illustrated in Figure 5. We start with
a linear segmentation and alignment of all training videos, train
the respective RNN and HMM models and run an inference with
the trained models which results in new frame boundaries for each
action. We then redistribute the HMM states according to the new
segmentation and repeat the training procedure several times until
convergence is reached. In the following, we describe the two
relevant steps, the initialization as well as the iterative training
procedure in detail.

Initialization Each video is divided into N segments of
equal size, where N is the number of action instances in the
transcript (Figure 5a). Each action segment is further subdivided
equally across the subactions (Figure 5b). Note that this defines
the mapping s(t) from frames to subactions. Additionally, each
subaction should cover m frames of an action on average. We
fix m to 10 frames per subaction. Thus, the initial number of
subactions for each action is

number of frames
number of action instances ·m. (17)

Hence, initially each action is modeled with the same number
of subactions. This can change during the following iterative
optimization.

Training The fine-grained RNN and the HMM are trained
with the current mapping st as ground truth (Figure 5c). Then,
the RNN and HMM are applied to the training videos and a new
alignment of frames to subactions (Figure 5d) is inferred given the
new fine-grained probabilities p(xt|s) from the RNN. The new
alignment is obtained by finding the subaction mapping st that
best explains the data:

ŝt = argmax
st

{
p(xT1 |aN1)

}

= argmax
st:A(st)=aN1

{ T∏

t=1

p
(
xt|st

)
· p
(
st|st−1

)
· p
(
lt(st)|st

)}
.

(18)

Again, Equation (18) can be efficiently computed using a Viterbi
algorithm and we include our proposed length regularization in the
recursive equation, cf. Equation (16). For the case of training with
sparse frame-level annotations, the resulting alignment is further
refined as described in Section 4.3.

Reestimation. Once the realignment is computed for all train-
ing videos, the new average length of each action is computed
and the number of subactions is re-estimated based on the updated
average action lengths, which is computed as Equation (17), but
for the entire action a instead of the state s. Correspondingly,
there are now len(a)/m subactions for action a, which are again
uniformly distributed among the frames assigned to the action
(Figure 5e). This new alignment is then used as current mapping
and, as described in the beginning, the RNN can be trained with

8

Action transcript:

action 1 action 2 action 3

(a) Linear Alignment to Actions

(b) Linear Alignment to HMM States
s•1 s•2 s•3 s•1 s•2 s•3 s•1 s•2 s•3

(c) Estimate p(xt|st) and p(st|st−1) train RNN train HMM

(d) max
s1,...,sT

{∏
t
p(xt|st) · p(st|st−1) · p(lt(st)|st)

} s•1 s•2 s•3 s•1 s•2 s•3 s•1 s•2 s•3

(e) Re-distribute HMM states
s•1 s•2 s•1 s•2 s•3 s•4 s•5 s•1 s•2

(f) Estimate p(xt|st) and p(st|st−1) train RNN train HMM

Iterate until convergence

Fig. 5. Training process of our model. Initially, each action is modeled with the same number of subactions and the video is linearly aligned to these
subactions. Based on this alignment, the RNN is trained and used in combination with the HMMs to realign the video frames to the subactions.
Eventually, the number of subactions per action is reestimated and the process is iterated until convergence.

this new mapping and the HMM parameters can be updated
(Figure 5f). As the mapping for each iteration requires a different
number of outputs for the RNN, we train a new RNN-model for
each iteration from scratch, initialized with random weights. These
steps are iterated until convergence.

4.7 Stop criterion
As the system iteratively approximates the optimal action segmen-
tation on the training data, we define a stop criterion based on the
overall amount of frame labels changed from one iteration to the
succeeding one. Overall we stop if less than 5% of the frames are
assigned a new label or we reach a maximum of 15 iterations.

5 SETUP

5.1 Datasets
We evaluate the proposed approach on two different datasets. The
Breakfast dataset is a large scale dataset for hierarchical activity
recognition and detection and comprises roughly about 4 million
frames in 1, 712 clips and has an overall duration of 66.7 hours.
The dataset comprises 10 breakfast related tasks such as making
tea but also complex activities such as the preparation of fried
egg or pancake recorded with 52 different test persons in various
kitchen environments. It features 48 action classes with a mean
of 4.9 instances per video. We follow the evaluation protocol as
proposed by the authors in [16].

The Hollywood extended [9] dataset is an extension of the
well known Hollywood dataset, featuring 937 clips from different
Hollywood movies with overall 787, 720 frames. The clips are
annotated with two or more action labels resulting in 16 different
action classes overall and a mean of 2.5 action instances per clip.
The authors propose a ten fold evaluation by selecting random
clips. To allow for a better reproducibility of the results, we choose
the last digit of the video number to define the splitting in the
following evaluation.

Both datasets show a high heterogeneity, the first because of
different persons, locations and camera viewpoints, the second
because of the naturally high appearance variation of the movie
sources. The two datasets differ in the mean and variance of
the video length as well as in the duration and variance of
the annotated actions. This difference is important as it can be
expected that modifications of the temporal modeling have a
higher impact on data with higher temporal heterogeneity than
on those with homogeneous temporal properties.

5.2 Features

For both datasets we computed the features as described in [52]
using improved dense trajectories (IDT) and Fisher vectors (FVs).
For the FV representation, we first reduce the dimensionality of
the IDT features from 426 to 64 by PCA and sample 150, 000
randomly selected features to build a GMM with 64 Gaussians.
The Fisher vector representation [53] for each frame is computed
over a sliding window of 20 frames. Following [54], we apply
power- and `2-normalization to the resulting FV representation.
Additionally, we reduce the final FV representation from 8, 192 to
64 dimensions via PCA to keep the overall video representation
manageable and easier to process.

5.3 Alignment vs. Segmentation

In case of weak learning of human actions two possible tasks
can be considered to assess the accuracy of the proposed system,
alignment and segmentation. In case of temporal action alignment
as e.g. used by [9], [10], [11], the test video and its respective
transcript annotation is given and the task is to infer the segment
boundaries based on the given order information. The accuracy in
this case can be reported by mean over frames (MoF) as proposed
by [11] or by the Jaccard index (Jacc.), as in [9]. In this case,
the Jaccard index is computed as intersection over detection (IoD)

9

Breakfast Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

GMM w/o reest. 15.3 23.3 26.3 27.0 26.5
MLP w/o reest. 22.4 24.0 23.7 23.1 20.3
GRU w/o reest. 25.5 29.1 28.6 29.3 28.8

TABLE 1
Results for temporal action segmentation with GRU-based model

compared to MLP-based model and GMM over five iterations. It shows
that the MLP and GMM are outperformed by the GRU-based model.

Additionally the MLP-based model quickly starts to overfit whereas the
GRU oscillates at a constant higher level.

and defined by |G ∩D|/|D| with G referring to the ground truth
frames and D referring to the detected action frames.

In case of temporal action segmentation, only the test video
is given and the task is to infer the occurring actions as well as
their respective frame boundaries. We refer to temporal action
segmentation as the combined video segmentation and classifi-
cation. Thus, given a video without any further information, the
task is to classify all frames according to their related action. This
includes to infer which actions occur in the video, in which order
they occur, and their respective start and end frames. This task is
evaluated by the mean over frames (MoF) [10], [11].

6 EVALUATION

We first evaluate the performance of the different components of
our system, namely the GRU based classification, the subaction
modeling, the length prior, and the semi-supervised setup for
temporal action segmentation. We evaluate all tasks on the test
set of the Breakfast dataset and report results as mean accuracy
over frames (MoF). We iterate the system until the stop criterion
as described in Section 4.7 is reached.

6.1 Evaluation of GRU-based model
First, we evaluate the influence of the proposed fine grained RNN
modeling. In order to analyze the capability of capturing temporal
context with the recurrent network, we compare it to a system
where a multilayer perceptron (MLP) is used instead. The MLP
only operates on frame level and does not capture temporal context
as there is no recurrent connection involved. In order to provide
a fair comparison to the recurrent model, we setup the MLP with
a single hidden layer of rectified units such that it has the same
number of parameters as the recurrent network. We also look at the
performance of standard GMM models, as they would be usually
used in the context of HMMs. In this case, we follow the setup
as described by [52], using a single Gaussian distribution for each
state of the model.

For this evaluation, we use a simplified version of the system
without subaction reestimation or length prior to achieve com-
parable results after each iteration. We show results for the first
five iterations in Table 1. It becomes clear that GRUs outperform
MLPs and GMMs, starting with 25.5% for the initial recognition,
and reaching up to 29.3% after the fourth iteration. The MLP
baseline stays continuously below this performance. Thus, it can
be assumed that the additional information gained by recurrent
connections in this context supports classification. One can further
see that the MLP reaches its best performance after the second it-
eration and then continuously decreases, whereas the GRU begins
to oscillate around 29%, hinting that the MLP also starts to overfit
at an earlier stage compared to the GRU. The GMMs are also

Breakfast Accuracy (Mof)

GRU no subactions 22.4
GRU w/o reestimation 28.8
GRU + reestimation 33.3

GRU + GT length 51.3

TABLE 2
Results for temporal action segmentation on the Breakfast dataset

comparing accuracy of the proposed system (GRU + reestimation) to
the accuracy of the same architecture without subactions (GRU no

subactions) and to the architecture with subclasses but without
reestimation.

0 2 4 6 8 10 12 14
1,400

1,600

1,800

2,000

2,200

Iteration

N
u
m
b
er

o
f
st
a
te
s

Number of states with reestimation

Fig. 7. Evolution of number of states for the model with state reesti-
mation. The number of states increases in the first five iterations and
converges after ten iterations.

performing better than the MLP but, with a maximum of 27.0%,
do not reach the performance of the GRU.

6.2 Analysis of the subaction modeling

Second, we regard the properties of the proposed subaction
modeling. We therefore compare the proposed system with the
results of the same setting, but without further subdividing actions
into subactions (GRU no subactions, Table 2). Additionally, we
regard results of the system without reestimation of subactions
during optimization (GRU w/o reestimation, Table 2). For the
system without reestimation, we follow the initial steps as shown
in Figure 5, thus, we linearly segment the videos according to the
number of actions, generate an initial subaction alignment, train
the respective subaction classes, and realign the sequence based
on the RNN output. But, opposed to the setup with reestimation,
we omit the step of reestimating the number of subclasses and
the following alignment. Instead, we just use the output of the
realignment (see Figure 5d) to retrain the classifier and iterate the
process of training, alignment, and re-training. Thus, the number
of subclasses is constant and the coarse model is not adapted to
the overall estimated length of the action class.

Finally, we compare to an approach in which we use the
ground truth boundaries to compute the mean length of an action
class and set the number of subactions based on the mean ground
truth length (GRU + GT length, Table 2). Here, all action classes
are still uniformly initialized, but longer action classes are divided
into more subactions than shorter ones. We include this scenario
as it models the performance in case that the optimal number
of subaction classes would be found. We again use a simplified
version of the system without length prior to achieve comparable
results.

Table 2 shows that the performance without subactions is
significantly below all other configurations, supporting the idea
that subaction modeling in general helps recognition in this

10

GRU no subaction:

GRU w/o reest.:

GRU with reest.:

Ground truth:

sequence: take bowl, pour cereals, pour milk, stir cereals

GRU no subaction:

GRU w/o reest.:

GRU with reest.:

Ground truth:

sequence: pour oil, crack egg, fry egg, add saltnpepper, fry egg, put egg2plate

Fig. 6. Example of temporal action segmentation for two samples from the Breakfast dataset showing the segmentation result for “preparing cereals”
and “preparing friedegg”. Although the actions are not always correctly detected, there is still a reasonable alignment of detected actions and ground
truth boundaries.

Box function

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Linear decay

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Half Poisson

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Half Gaussian

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Fig. 8. Overview of evaluated length models showing a simple box function, a linear decay function, a half Poisson decay and a half Gaussian
function for a subaction with a mean length of 10 frames. See Appendix for formulas of the functions.

scenario. The model with subactions, but without reestimation,
improves over the single class model, but is still below the
system with subaction reestimation. Compared to that, the model
with subaction reestimation performs 5% better. We ascribe the
performance increase of the reestimated model to the fact that
a good performance is highly related to the correct number of
subactions, thus to a good length representation of the single
actions. The impact of the number of subactions becomes clear,
when considering the results when the ground truth action lengths
are used. The performance of the same system, just with different
numbers of subactions, increases by almost 20%. This effect
becomes also visible in the qualitative results as shown in Figure
6. Comparing the results of the three configurations - without
subactions, without restimation, and with reestimation - to the
ground truth annotations, it shows that, although the overall se-
quence is not always correctly inferred by the models, the system
with reestimation finds a good alignment compared to the ground
truth frame boundaries. We also regard how the overall number of
subactions changes by reestimating after each iteration as shown in
Figure 7. It becomes visible that the number of subactions mainly
increases in the beginning and starts to converge after five to ten
iterations.

6.3 Analysis of length prior
In a next step, we analyze the impact of the length prior on the
overall system. In terms of decay functions, we evaluate four
different types of functions as shown in Figure 8, a simple box
function, a linear decay function, a half Poisson decay and a half
Gaussian function.

First, we evaluate the overall performance of the different
functions on the system. For all measures, we use the stop criterion
as described in Section 4.7. As Table 3 shows, the length model

0 2 4 6 8 10 12 14
0.24

0.28

0.32

0.36

Iteration

S
eg
m
en
ta
ti
on

ac
cr
u
ac
y
(M

of
)

Length model on Breakfast

No length model

Box function

Linear decay

Half Poisson

Half Gaussian

Fig. 9. Results for temporal segmentation with different length models on
the Breakfast dataset over 15 iterations. Solid lines show the results until
the proposed stop criterion is reached. Dashed lines show the results
after the stop criterion.

mainly improves the results for the Breakfast dataset. All length
models are doing better than the original system without length
model in this case, with a best accuracy of 37.0% reached by the
linear decay function. This is further supported by the evaluation
of the performance during training as the plot in Figure 9 shows.
Here, the solid line shows the segmentation accuracy of the models
after each iteration until the stop criterion is reached. After that,
additional results are displayed by a dashed line. It shows that all
four functions significantly outperform the system without length

11

Length model Breakfast(MoF) Hollywood Ext.(IoU)

No length model 32.6 11.5

Box function 36.7 9.9
Linear decay 37.0 10.5
Half Poisson 35.7 11.1
Half Gaussian 36.7 12.3

TABLE 3
Results of temporal action segmentation for different length prior

functions on the Breakfast and the Hollywood Extended dataset. All
results are based on a stop criterion of 5% frame change rate during

alignment or a maximum of 15 iterations.

prior with best results at 36.7% for box and 35.7% and 36.7%
for half Poisson and Gaussian.

The impact of the length models on the Hollywood Extended
dataset is smaller than on the Breakfast dataset as shown in Table
3. This behaviour can be based on the fact that the actions in the
Hollywood Extended dataset are usually shorter and the action
classes have a lower temporal variance compared to the Breakfast
dataset. On Hollywood extended, all action classes usually have
a consistent mean frame length, where as in case of Breakfast,
the mean length of action classes significantly varies. Thus, the
benefit of using length models increases with the heterogeneity
of the target action classes. Therefore it can be expected that a
length model has less impact in this case than for datasets with
high temporal variance among the action classes.

Overall, based on the numbers in Table 3, it can be stated that
the half Gaussian function gives the most consistent improvement
for both datasets. We therefore use a length prior with a half
Gaussian function for the following experiments.

6.4 Semi supervised learning including sparse frame-
level annotation
Finally, we evaluate the behaviour of the proposed system in a
semi-supervised setup including sparse frame-based annotation.
We follow the idea presented in [10] of using a fraction of
all frames as additional information during training. We again
report all results for the segmentation task on the Breakfast
dataset. We start with a fraction of 0.25% of all annotated frames
which roughly corresponds to one frame per action instance in
the dataset. We uniformly select the frame annotation from the
ground truth dataset. Note that not all action instances will have
a respectively labeled frame and we do not get any information
about the segment boundaries by this type of labeling.

Results for the sparse frame-level annotation are shown in
Table 4. It shows that even a small fraction of annotated frames
(0.25%) helps to improve the overall accuracy on the Breakfast
dataset by almost 20% reaching 56.0%. It further shows that
with only 1% of annotated frames, the result is already getting
close to the fully supervised setting of 61.0%. Additionally, we
observe a faster convergence behaviour when including more
frame-level annotation. The system without frame-level annotation
usually needs 12-15 iterations to meet the respective convergence
criterion. As can be seen in Figure 10 in case of frame level
supervision, we reach convergence already after two to four
iteration steps, as the overall frame alignment obviously shifts less
the more frame information is available. This supports the idea
that a partial annotation of frames might be a valid alternative to
the time consuming, fully supervised labeling.

0 2 4 6 8 10

0.3

0.4

0.5

0.6

iteration

a
cc
u
ra
cy

(M
of
)

Semi-supervised training on Breakfast

0.0

0.0025

0.01

0.1

1.0

Fig. 10. Results of temporal action segmentation with semi supervised
training on the Breakfast dataset for 10 iterations. Solid lines show the
results until the proposed stop criterion is reached, dashed lines show
the results after the stop criterion. It shows that even small fractions of
annotated frames can significantly improve the overall performance of
the system.

Fraction Breakfast(Mof) Hollywood Ext.(IoU)

0.0 36.7 12.3

0.0025 56.0 12.3
0.01 58.8 13.1
0.1 60.9 13.3
1 61.3 13.7

TABLE 4
Results for temporal action segmentation wtih semi supervised learning

on the Breakfast and the Hollywood Extended dataset with a half
Gaussian length prior. The fraction indicates how many frames of the
data were labeled. A fraction of 1 corresponds to a fully supervised

setup. All results are based on the stop criterion of 5% frame change
rate during alignment or a maximum of 15 iterations.

The same behaviour at a smaller scale is also visible for the
Hollywood Extended dataset (see Table 4). Here, we mainly see
an increase when 1% or more frames are annotated. It can be
assumed that the smaller improvement is based on two points.
First, the weakly supervised accuracy of 12.3% of the Hollywood
Extended dataset is already close to the fully supervised setting
with 13.7%. Thus, the increase can only be within this margin.
Second, we again observe that the additional information during
training mainly helps for a better temporal alignment of the data.
Thus, it can be expected that the influence on datasets with higher
temporal variance is stronger than for those with lower temporal
variance.

6.5 Comparison to State-of-the-Art
Temporal Action Segmentation We compare our system to four
different approaches published for this task: The first is the Or-
dered Constrained Discriminative Clustering (OCDC) proposed by
Bojanovski et al. [9], which has been introduced on the Hollywood
extended dataset. Second, we compare against the HTK system

12

Breakfast

Model Accuracy (Mof)

OCDC [9]* 8.9
HTK [11] 25.9
ECTC [10] 27.7
TCFPN [24] 38.4

GRU-RNN [17] 33.3
GRU + length prior 36.7

Hollywood Extended

Model Jacc (IoU)

HTK [11] 8.6
TCFPN [24] 12.6

GRU-RNN [17] 11.9
GRU + length prior 12.3

TABLE 5
Comparison of temporal action segmentation performance for GRU

based weak learning with other approaches. For the Breakfast dataset,
we report performance as mean over frames (Mof), for Hollywood

extended, we measure the Jaccard index as intersection over union for
this task (*from [10]).

used by Kuehne et al. [11], third against the Extended Connec-
tionist Temporal Classification (ECTC) by Huang et al. [10] and
fourth against the temporal convolutional feature pyramid network
(TCFPN) by Ding and Xu [24]. We further compare against a
previous version of this system without lenght model [17].

For the Breakfast dataset, we follow the evaluation protocol
of [16] and [10] and report results as mean accuracy over frames
over four splits. For the Hollywood Extended dataset, we follow
the evaluation protocol of [11] and report the Jaccard index (Jacc.)
as intersection over union (IoU) over 10 splits.

Results are shown in Table 5. One can see that both GRU
systems show a good performance, and that the proposed system
outperforms most current approaches on the evaluated datasets.
Only the recently released TCFPN reaches better results on this
task.
Temporal Action Alignment We also address the task of action
alignment. We assume that given a video and a sequence of
temporally ordered actions, the task is to infer the respective
boundaries for the given action order. We report results for the test
set of Breakfast as well as for the Hollywood Extended dataset
based on the Jaccard index (Jacc.) computed as intersection over
detection (IoD) as proposed by [9]. The results are shown in
Table 6.

The proposed approach outperforms current state-of-the-art
approaches. It also shows that the system without length model
performs slightly better than the system with length model for the
alignment in case of Hollywood Extended. As already discussed in
Section 6.3, the differences between the proposed approach with
and without length model are marginal on this dataset.
Fully supervised classification We finally evaluate the approach
in a fully supervised setting and compare it to other proposed
approaches. Here, we compute the mean length from the training
annotations directly and use it to determine the number of states
as well as the length parameter of the prior function.

Table 7 shows that the system clearly outperforms previous
approaches. Since the apporaches [16] and [52] have a similar
hierarchical structure as the presented system and similar fea-

Breakfast

Model Jacc. (IoD)

OCDC [9] 23.4
HTK [11] 42.4
TCFPN [24] 52.3

GRU-RNN [17] 47.3
GRU + length prior 52.4

Hollywood Extended

Model Jacc. (IoD)

OCDC [9]** 43.9
HTK [11]** 42.4
ECTC [10]** 41.0
TCFPN [24] 39.6

GRU-RNN [17] 46.3
GRU + length prior 46.0

TABLE 6
Results for temporal action alignment on the test set of the Breakfast

and the Hollywood extended dataset reported as Jaccard index of
intersection over detection (IoD)(**results obtained from the authors).

Breakfast

Model MoF

HMM-BOW [16] 28.8
HMM-FV [52] 56.3
TCFPN [24] 52.0

GRU w/o length prior 60.2
GRU + length prior 61.3

TABLE 7
Results for fully supervised temporal action segmentation on the

Breakfast dataset (MoF).

tures [52], we can assume that the main improvement can be
attributed to the underlying GRU models. This is consistent with
the findings in Section 6.1, where it shows that the proposed GRUs
improve fine-grained frame-based classification compared to other
approaches. Additionally, it shows that the length model also
improves the segmentation accuracy in case of fully supervised
training. This is important as in this case, we can assume that all
other temporal factors, such as the number of states are already
optimal. Thus, even in this case, a temporal prior can improve the
overall recognition of the system.

7 CONCLUSION

We presented an approach for weakly, semi and fully supervised
learning of human actions based on a combination of a discrimi-
native representation of subactions modeled by a recurrent neural
network and a coarse probabilistic model to allow for a temporal
alignment and inference over long sequences. Although the system
itself shows already good results, the performance is significantly
improved by approximating the number of subactions for the
different action classes and by adding a length prior formulation
to the overall system. Accordingly, we combine the length model
with the adaptation of the number of subaction classes by iterating
realignment and reestimation during training. The resulting model
shows a competitive performance on various weak learning tasks

13

such as temporal action segmentation and action alignment on two
standard benchmark datasets.

APPENDIX A
In the following we report the formulas used for the four different
length models evaluated in our work as well as their basic proper-
ties. Note that we abbreviate lt(st) by lt for better readability.
Also note that each distribution is normalized in a way that
max{p̃(l|s)} = 1, i.e. for each of the monotonically decreasing
functions, the highest value is one. Although the models are
not a strict probability distribution anymore, the normalization
simplifies the formulas and sums up to a constant in the Viterbi
decoding, not affecting the overall outcome. We set the ε in all
functions to 0.001. All models are also displayed in Figure 8.

Box Function

p̃
(
lt|st

)
=

{
1, lt ≤ 2 · len(st)
ε, lt > 2 · len(st)

(19)

The box function is considered as the basic representation of
a length model. In this case the length prior does not influence
the inference up to the point that twice the mean length of the
respective state is reached. After that, the overall probability is
multiplied with a given ε and thus marginalized, so that the
respective state is not used anymore.

Linear Decay

p̃
(
lt|st

)
=

1, lt ≤ len(st)

1− lt−len(st)
len(st)

, lt > len(st) ∧ lt < 2 · len(st)
ε, lt ≥ 2 · len(st)

(20)

The linear decay function can be seen as an extension of the
box function. Here, the length prior is fix up to the point that the
mean length of the respective state is reached. Then, the overall
length prior linearly decreases, punishing longer states more than
shorter ones. After twice the mean length is reached, the length
prior is set to ε and the overall probability is thus marginalized, so
that the respective state is not used anymore.

Half Poisson

p̃
(
lt|st

)
=

{
1, lt ≤ len(st)

const · len(st)
lt

lt!
e−len(st), lt > len(st)

(21)

For the Half Poisson, const is a normalization factor such that
maxl

{
p̃
(
l|st
)}

= 1. The half Poisson model in the here proposed
case also starts with a plateau and is fix up to the point that
the mean length of the respective state is reached. After that we
consider the right-half of the Possion distribution of the respective
state. We choose this combination as we want to model the
discrete distribution of state lengths, and at the same time, ensure
a monotonically decreasing function.

Half Gaussian

p̃
(
lt|st

)
= e−

(lt−µ)2

σ2 (22)

Closely related to the half Poisson model is the half Gaussian
model. Here, the property of a monotonically decreasing function
is implicitly ensured by setting µ = 0 and σ = len(st).

ACKNOWLEDGMENTS

The work has been financially supported by the DFG projects
KU 3396/2-1 (Hierarchical Models for Action Recognition and
Analysis in Video Data) and GA 1927/4-1 (DFG Research Unit
FOR 2535 Anticipating Human Behavior) and the ERC Starting
Grant ARCA (677650). This work has been supported by the AWS
Cloud Credits for Research program.

REFERENCES

[1] H. Wang and C. Schmid, “Action recognition with improved trajectories,”
in Int. Conf. on Computer Vision, 2013, pp. 3551–3558.

[2] X. Peng, C. Zou, Y. Qiao, and Q. Peng, “Action Recognition with Stacked
Fisher Vectors,” in European Conf. on Computer Vision, 2014.

[3] M. Jain, J. C. van Gemert, and C. G. M. Snoek, “What do 15,000 object
categories tell us about classifying and localizing actions?” in IEEE Conf.
on Computer Vision and Pattern Recognition, 2015.

[4] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. van Gool,
“Temporal Segment Networks: Towards Good Practices for Deep Action
Recognition,” in European Conf. on Computer Vision, 2016.

[5] J. Carreira and A. Zisserman, “Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2017.

[6] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in IEEE Conf. on Computer Vision
and Pattern Recognition, 2008.

[7] M. Marszalek, I. Laptev, and C. Schmid, “Actions in context,” in IEEE
Conf. on Computer Vision and Pattern Recognition, 2009.

[8] J.-B. Alayrac, P. Bojanowski, N. Agrawal, I. Laptev, J. Sivic, and
S. Lacoste-Julien, “Unsupervised learning from Narrated Instruction
Videos,” in IEEE Conf. on Computer Vision and Pattern Recognition,
2016.

[9] P. Bojanowski, R. Lajugie, F. Bach, I. Laptev, J. Ponce, C. Schmid, and
J. Sivic, “Weakly Supervised Action Labeling in Videos Under Ordering
Constraints,” in European Conf. on Computer Vision, 2014.

[10] D.-A. Huang, L. Fei-Fei, and J. C. Niebles, “Connectionist Temporal
Modeling for Weakly Supervised Action Labeling,” in European Conf.
on Computer Vision, 2016.

[11] H. Kuehne, A. Richard, and J. Gall, “Weakly supervised learning of
actions from transcripts,” Computer Vision and Image Understanding,
vol. 163, no. C, Oct. 2017.

[12] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2015.

[13] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond Short Snippets: Deep Networks
for Video Classification,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2015.

[14] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao, “A Multi-
Stream Bi-Directional Recurrent Neural Network for Fine-Grained Ac-
tion Detection,” in IEEE Conf. on Computer Vision and Pattern Recog-
nition, 2016.

[15] Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue, “Modeling Spatial-
Temporal Clues in a Hybrid Deep Learning Framework for Video
Classification,” in ACM Conf. on Multimedia, 2015.

[16] H. Kuehne, A. B. Arslan, and T. Serre, “The Language of Actions: Re-
covering the Syntax and Semantics of Goal-Directed Human Activities,”
in IEEE Conf. on Computer Vision and Pattern Recognition, 2014.

[17] A. Richard, H. Kuehne, and J. Gall, “Weakly Supervised Action Learning
with RNN based Fine-to-coarse Modeling,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2017.

[18] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories
and motion boundary descriptors for action recognition,” International
Journal on Computer Vision, vol. 103, no. 1, pp. 60–79, May 2013.

[19] K. Simonyan and A. Zisserman, “Two-Stream Convolutional Networks
for Action Recognition in Videos,” in Advances in Neural Information
Processing Systems, 2014.

[20] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional Two-
Stream Network Fusion for Video Action Recognition,” in IEEE Conf.
on Computer Vision and Pattern Recognition, 2016.

[21] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Action-
VLAD: Learning spatio-temporal aggregation for action classification,”
in IEEE Conf. on Computer Vision and Pattern Recognition, 2017.

14

[22] O. Duchenne, I. Laptev, J. Sivic, F. Bach, and J. Ponce, “Automatic
annotation of human actions in video,” in Int. Conf. on Computer Vision,
2009.

[23] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks,” in Int. Conf. on Machine Learning, 2006.

[24] L. Ding and C. Xu, “Weakly-supervised action segmentation with itera-
tive soft boundary assignment,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2018.

[25] C. Lea, M. Flynn, R. Vidal, A. Reiter, and G. Hager, “Temporal Convolu-
tional Networks for Action Segmentation and Detection,” in IEEE Conf.
on Computer Vision and Pattern Recognition, 2017.

[26] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human
actions classes from videos in the wild,” CoRR, vol. abs/1212.0402, 2012.

[27] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in IEEE Conf. on Computer Vision and Pattern Recognition,
2014, pp. 1725–1732.

[28] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and
A. Zisserman, “The kinetics human action video dataset,” CoRR, vol.
abs/1705.06950, 2017.

[29] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and
R. Sukthankar, “THUMOS challenge: Action recognition with a large
number of classes,” http://crcv.ucf.edu/THUMOS14/, 2014.

[30] L. Wang, Y. Xiong, D. Lin, and L. van Gool, “UntrimmedNets for
Weakly Supervised Action Recognition and Detection,” in IEEE Conf.
on Computer Vision and Pattern Recognition, 2017.

[31] P. Nguyen, T. Liu, G. Prasad, and B. Han, “Weakly supervised action
localization by sparse temporal pooling network,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2018.

[32] O. Koller, H. Ney, and R. Bowden, “Deep Hand: How to Train a CNN
on 1 Million Hand Images When Your Data Is Continuous and Weakly
Labelled,” in IEEE Conf. on Computer Vision and Pattern Recognition,
2016.

[33] O. Koller, S. Zargaran, and H. Ney, “Re-Sign: Re-Aligned End-to-End
Sequence Modelling with Deep Recurrent CNN-HMMs,” in IEEE Conf.
on Computer Vision and Pattern Recognition, 2017.

[34] J. Malmaud, J. Huang, V. Rathod, N. Johnston, A. Rabinovich, and
K. Murphy, “Whats cookin? Interpreting cooking videos using text,
speech and vision,” in Conf. of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
2015.

[35] C. Gan, C. Sun, L. Duan, and B. Gong, “Webly-Supervised Video
Recognition by Mutually Voting for Relevant Web Images and Web
Video Frames,” in European Conf. on Computer Vision, 2016.

[36] C. Sun, S. Shetty, R. Sukthankar, and R. Nevatia, “Temporal Localization
of Fine-Grained Actions in Videos by Domain Transfer from Web
Images,” in ACM Conf. on Multimedia, 2015.

[37] Y. Yan, C. Xu, D. Cai, and J. J. Corso, “Weakly supervised actor-action
segmentation via robust multi-task ranking,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2017.

[38] C. Wu, J. Zhang, S. Savarese, and A. Saxena, “Watch-n-Patch: Unsu-
pervised Understanding of Actions and Relations,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2015.

[39] P. Bojanowski, R. Lajugie, E. Grave, F. Bach, I. Laptev, J. Ponce, and
C. Schmid, “Weakly-supervised alignment of video with text,” in Int.
Conf. on Computer Vision, 2015.

[40] A. Richard and J. Gall, “Temporal Action Detection Using a Statistical
Language Model,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2016.

[41] S. Vaseghi, “State duration modelling in hidden markov models,” Signal
Processing, vol. 41, no. 1, pp. 31 – 41, 1995.

[42] M. Dewar, C. Wiggins, and F. Wood, “Inference in Hidden Markov Mod-
els with Explicit State Duration Distributions,” IEEE Signal Processing
Letters, vol. 19, no. 4, pp. 235–238, 2012.

[43] H. Zen, K. Tokuda, T. Masuko, T. Kobayasih, and T. Kitamura, “A
Hidden Semi-Markov Model-Based Speech Synthesis System,” IEICE
- Transactions on Information and Systems, vol. E90-D, no. 5, pp. 825–
834, 2007.

[44] H. Narimatsu and H. Kasai, “State duration and interval modeling in
hidden semi-Markov model for sequential data analysis,” Annals of
Mathematics and Artificial Intelligence, vol. 81, no. 3, pp. 377–403,
2017.

[45] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the Prop-
erties of Neural Machine Translation: Encoder-Decoder Approaches,”

in Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation (SSST-8), 2014, pp. 103–111.

[46] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An Empirical Exploration
of Recurrent Network Architectures,” in Int. Conf. on Machine Learning,
2015.

[47] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in NIPS 2014
Workshop on Deep Learning, 2014.

[48] N. Ballas, L. Yao, P. Chris, and A. Courville, “Delving Deeper into
Convolutional Networks for Learning Video Representations,” in Int.
Conf. on Learning Representations, 2016.

[49] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, pp. 1550–1560, 1990.

[50] D. Jurafsky, C. Wooters, J. Segal, A. Stolcke, E. Fosler, G. Tajchaman,
and N. Morgan, “Using a stochastic context-free grammar as a language
model for speech recognition,” in IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, vol. 1, 1995, pp. 189–192.

[51] H. Ney and S. Ortmanns, “Dynamic programming search for continuous
speech recognition,” IEEE Signal Processing Magazine, vol. 16, no. 5,
pp. 64–83, 1999.

[52] H. Kuehne, J. Gall, and T. Serre, “An end-to-end generative framework
for video segmentation and recognition,” in IEEE Winter Conf. on
Applications of Computer Vision, 2016.

[53] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image Classifica-
tion with the Fisher Vector: Theory and Practice,” International Journal
on Computer Vision, vol. 105, no. 3, pp. 222–245, Dec. 2013.

[54] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the Fisher Kernel
for Large-scale Image Classification,” in European Conf. on Computer
Vision, 2010.

Hilde Kuehne Dr. Hilde Kuehne obtained her
Diploma in Computer Science from the Univer-
sity of Koblenz-Landau in 2006 and got her doc-
toral degree in engineering form the Karlsruhe
Institute of Technology (KIT) in 2014. From 2013
to 2016 she worked as a senior researcher at the
Fraunhofer Institute for Communication, Informa-
tion Processing and Ergonomics FKIE. In 2016,
she joined the Computer Vision Group headed
by Prof. Gall at the Institute of Computer Science
at the Universtity of Bonn.

Alexander Richard Alexander Richard received
his Masters degree in Computer Science from
RWTH Aachen University in 2014, specializing
on automatic speech recognition. In 2014, he
joined the Computer Vision Group of Prof. Gall
at the Institute of Computer Science at the Uni-
versity of Bonn as a doctoral student researcher.
His research focuses on video analysis and au-
tomatic detection and classification of human
actions.

Juergen Gall Juergen Gall obtained his B.Sc.
and his Masters degree in mathematics from the
University of Wales Swansea (2004) and from
the University of Mannheim (2005). In 2009, he
obtained a Ph.D. in computer science from the
Saarland University and the Max Planck Institut
für Informatik. He was a postdoctoral researcher
at the Computer Vision Laboratory, ETH Zurich,
from 2009 until 2012 and senior research scien-
tist at the Max Planck Institute for Intelligent Sys-
tems in Tübingen from 2012 until 2013. Since

2013, he is professor at the University of Bonn and head of the Computer
Vision Group.

