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Abstract. Action recognition from 3d pose data has gained increasing
attention since the data is readily available for depth or RGB-D videos.
The most successful approaches so far perform an expensive feature se-
lection or mining approach for training. In this work, we introduce an
algorithm that is very efficient for training and testing. The main idea
is that rich structured data like 3d pose does not require sophisticated
feature modeling or learning. Instead, we reduce pose data over time to
histograms of relative location, velocity, and their correlations and use
partial least squares to learn a compact and discriminative representation
from it. Despite of its efficiency, our approach achieves state-of-the-art
accuracy on four different benchmarks. We further investigate differences
of 2d and 3d pose data for action recognition.

1 Introduction

Human action recognition has recently drawn an increasing interest in computer
vision owing to its applications in many fields including human computer inter-
action, surveillance and multimedia indexing. This interest has derived a rapid
development in terms of the problem scale, the efficiency of the proposed algo-
rithms, and even the data representations of human actions. Early approaches
for action recognition used the human pose as a high level representation of ac-
tions and used joint trajectories for action and gait recognition [1, 2]. However, in
these days, obtaining accurate measurements of body poses and joint locations
required special setups that were often tedious and very expensive.

Consequently, efforts deviated toward alternative low and mid level represen-
tations of pose, motion, visual appearance, or particular combinations of them for
better action models. For instance, [3, 4] rely majorly on motion cues to identify
similar action sequences under static or moving camera setups. Others utilized
the human appearance as the basic building blocks in discriminating actions
[5–7]. The introduction of interest points in video sequences [8, 9] led towards
a successful adaption of the bag-of-words model for human action recognition
[10–12]. Despite encouraging results of low and mid level features for action
recognition on several datasets, they suffer from variations of view point, sub-
ject, scale, and appearance. Moreover, they lack of a semantic meaning making
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the interpretation of the results sometimes difficult. In contrast, high level rep-
resentations (e.g. 3d pose-based) abstract away most variation factors and can
provide a semantic interpretation of the results.

The recent advances in both depth sensors and human pose estimation have
recently rekindled interest in high level human representations for action and
behavior analysis [13]. Although current algorithms for pose estimation from
monocular images [14], depth sensors [15], or multi-view setups [16] still have
some limitations in terms of accuracy, several recent studies [16–20] point to the
utility of pose estimation for improving the accuracy of action recognition sys-
tems. [17] utilize polar coordinates of joints in a sparse reconstruction framework
to classify human actions in realistic video datasets. Their evaluation clarifies the
implication of accurate pose estimation on action recognition and identifies the
potential of current pose estimation approaches for improving action recognition.
Similar observations are reported in [16, 18] on larger and more complex datasets.
In particular, [18] showed that in some scenarios high-level features extracted by
a current pose estimation algorithm [14] already outperform a state-of-the-art
low level representation based on dense trajectories [11].

Some of the most successful approaches for action recognition from 3d pose
data perform feature mining for training. For instance, [20] propose to learn
a set of the most distinctive joints. While [21] weight poses of actions based
on a mutual information criteria, [19] mine for most occurring temporal and
spatial structures of body joints for classification. Mining meaningful poses [21],
joints [20], or temporal and spatial joints structures [19], however, is usually time
consuming.

In this work, we propose an algorithm for pose-based action recognition that
is faster and more efficient for training and testing than existing works. Yet,
it achieves on popular datasets for action recognition from 3d pose or RGB-D
videos like [22, 23], state-of-the-art performance and outperforms other related
pose-based approaches. The efficiency is achieved by simplicity in design. Each
joint is modeled by a single feature vector that encodes only the most essential
information to characterize an action: the relative location of the joint, the ve-
locity of the joint, and the correlation between location and velocity. Inspired
by [17], the information over a short video clip is encoded by histograms. Based
on these features, a compact and discriminative representation is learned using
partial least squares (PLS) [24–28]. The representation can then be used with
any classifier like SVM or Kernel-PLS (KPLS) [29].

In our experimental evaluation, we show that for a high-level representation
based on 3d pose an expensive training approach as in [19–21] is not necessary to
achieve very accurate recognition results. We further investigate the performance
of our approach for action recognition from 2d pose data. Since 2d pose data is
ambiguous and not view-invariant, the performance drops in comparison to 3d
pose data. However, given some training pairs of 2d pose and corresponding 3d
pose, a mapping from 2d to 3d can be learned using a standard regression ap-
proach like Kernel partial least squares regression [29]. Although the regression
does not provide very accurate 3d poses, our experiments show that features
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Fig. 1. Overview of the framework.

computed on the regressed 3d poses outperform the features computed from the
2d poses directly. This indicates that 3d pose estimation instead of 2d pose esti-
mation from monocular videos has the potential to improve action recognition.

2 High Level Pose Representation

For representing actions by a high level pose-based representation, a sequence
of extracted 2d or 3d pose per frame is given. In order to be flexible and learn
the importance of a single joint, our representation consists of a feature for
each joint as depicted in Figure 1. Each joint feature, which are discussed in
Section 2.1 in more detail, models the distributions of the locations, velocities,
and geometric orientation of the movements within a video clip or fixed number
of frames as histograms. The histograms for each joint are then concatenated to
build the feature matrix and matrix discriminant analysis is performed to obtain
a set of of discriminant eigenvectors, which are used as high-level representation
of the video clip. The representation can then be used with any classifier for
classification.

2.1 Joint Features

To increase the robustness of the features to variations caused by different body
shapes or even foreshortening in case of 2d pose, the relative joint positions and
other vectors are converted into a spherical coordinate system. 2d vectors from 2d
poses are represented by the length r and the orientation angle θ ∈ [0, 360]. For a
3d skeleton representation, the horizontal orientation or azimuth α ∈ [0, 360] and
the vertical orientation or zenith φ ∈ [0, 180] are used. A vector v = (x, y, z) ∈ R3

is then converted into spherical coordinates (r, α, φ) by:
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(a) Location vectors (b) Velocity vectors (c) Normal vectors

Fig. 2. Illustration of the locations feature fl, velocities feature fv, and the normals
feature fn for a single joint j. For each frame k or frame pair (k, k + 1), the vectors
ljk, vjk, and njk are converted into spherical coordinates and added to a histogram as
shown in Figure 1.

r =
√
x2 + y2 + z2 (1)

φ =
180

π
×
(

arccos
(z
r

))
(2)

α =
180

π
× (atan2(y, x) + π) (3)

Using spherical coordinates, we use three features that represent distributions
over a fixed set of K frames as 3d or 2d histograms. For each feature, we indicate
if it applies to 2d and 3d poses or both:

Joint locations feature fl (2d and 3d): The fl features resemble their 2d
counterparts presented in [17]. But with 3d skeletons, our representation includes
the azimuth α and zenith φ angles along with the joint displacement r from a
reference point. For each sequence, we establish a local coordinate system whose
origin is located at the spine s, which naturally corresponds to the center of the
body. For a given location xjk of a joint j at frame k, we quantize the polar
coordinates (r, α, φ) of the joint location vector ljk = xjk−s into a 3d histogram
(R × Olv × Olh), where R,Olv, Olh are the number of bins for radius, vertical,
and horizontal angle. The location vectors of all frames but of a single joint
are accumulated in a single 3d histogram. The joint location vectors for three
frames and one joint are illustrated in Figure 2 (a). Thus, the locations feature
fl consists of J 3d histograms, where J is the number of joints. In case of 2d
pose, the histograms are 2d corresponding to the 2d coordinates (r, θ) for each
2d vector.

Joint velocities feature fv (2d and 3d): The joint locations features do
not encode any temporal information, which is important for classifying actions.
Given the locations of a joint j at successive frames ljk and lj(k+1), we convert
the velocity vector vjk = lj(k+1) − ljk into spherical coordinates without radius
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(α, φ). The radius is not taken into account to be invariant to different execution
speeds of an action among subjects. The velocity vectors for all K − 1 frame
pairs are then added to the 2d histogram Ovv × Ovh, where Ovv and Ovh are
the numbers of bins for vertical and horizontal angle. The velocity vectors for
two frame pairs are illustrated in Figure 2 (b). The velocities feature fl therefore
consists of J 2d histograms. The features fl are in many cases complimentary
to the fv features. While fv captures the velocity distributions of all joints, fl
captures the location distributions of all joints.

Joint movement normals feature fn (3d only): The joint movement nor-
mals feature models the correlation of location and velocity, which corresponds
to the cross product between the location vector ljk and the velocity vector vjk or
the cross product of the locations of two consecutive frames as njk = ljk×lj(k+1).
Up to a scaling factor, njk corresponds to the normal of the plane spanned by
the three points s and the joint positions at the two frames k and k + 1. Since
the length of the normal vector is anyway one, we convert njk into spherical
coordinates (α, φ) without r. The normals of the K − 1 frames are quantized
as the velocities feature into a 2d histogram and we obtain J 2d histograms for
fn. The movement normals for two frame pairs are illustrated in Figure 2 (c).
All three features model only the most essential information to characterize an
action: the relative locations of the joints, the velocities of the joints, and the
correlations between locations and velocities. However, combined with a discrim-
inative approach to learn a basis for the features, which is detailed in Section 2.2,
we achieve state-of-the-art performance and outperform features that are much
more expensive to compute.

Normalization and soft-binning To reduce any binning artifacts and to be
more robust against style variations, we perform soft-binning. This is achieved
by adding a quantized vector to all neighboring bins. The weights for the bins
are given by a Gaussian kernel with σ = 1. To handle sequences of different
length, the histograms are normalized by the L2-norm.

Temporal pyramid In addition, a temporal pyramid can be used. Instead
of having a single histogram per video clip, it can be subdivided into smaller
temporal segments. Since the videos in the datasets are short, we use a pyramid
with only two layers. The second layer divides the video in three equally sized
parts. The three histograms of the second layer and the histogram of the first
layer are then concatenated.

2.2 Learning Discriminative Action Features

Not all joints have the same importance for action recognition as illustrated
in Figure 3. It is therefore important to learn a compact and discriminative
representation for action recognition. Since we have defined the features per
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Fig. 3. Examples of joint trajectories for the hammering action from MSR-Action3D
dataset [22]. The action can be well described by the trajectories of the left arm (blue),
while the other joints (red) are less relevant. The trajectories also show the variations
among subjects in the dataset.

joint, we can define a pose feature fp ∈ RD as a weighted sum of all joint
features {fj ∈ RD}Jj=1:

fp =

J∑
j=1

wjfj , (4)

which can be expressed in matrix form as:

fp = Fw, (5)

where columns of F ∈ R(D×J) corresponds to the joint features as illustrated
in Figure 1 and w ∈ RJ defines their corresponding weights. The weights w
can be learned by partial least squares (PLS) [24], which has been recently
adopted in computer vision for different applications including pose estimation
and regression [25], image classification [26], pedestrian detection [27], and multi-
view learning [28].

Given M training samples (xi,yi)
M
i=1 where xi ∈ X and yi ∈ Y , PLS learns

two linear projections si = wT (xi − x) and ti = vT (yi − y) that maximize the
sampling covariance between X = {xi}i and Y = {yi}i [26]:

max

{(
1
M

∑
i siti

)2
(wTw)(vTv)

}
, (6)

where x and y are the corresponding means. When Y contains only class labels
as in our case, v is not relevant and only w is estimated, which is equivalent to
solving an eigenvalue problem [24, 26]:

Σbw∗ = λw∗. (7)

In our case, Σb is given by

Σb =
1

M

K∑
k=1

Mk

[
(Fk − F)

]T [
(Fk − F)

]
, (8)

where Mk denotes the videos for class k, F the mean feature matrix, and Fk

the mean feature matrix for class k. For the P largest eigenvalues λ, we use the
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Fig. 4. The first 7 discriminative projections of joint features extracted using PLS from
MSR-Action3d. Blue indicates positive weights and red negative weights for w1, . . . ,w7.
Notice that only few part combinations in this dataset are relevant while some joints
like the hips are irrelevant for human actions, which is indicated by the small size of
of the joints.

corresponding eigenvectors w as representation. Hence, the final feature fp of
a video sample i is given by projecting its feature matrix Fi to the learned P
largest projections as fp = [(Fiw1)T (Fiw2)T · · · , (FiwP )T ]T where fp ∈ RD∗P .

Figure 4 depicts the first seven eigenvectors learned using PLS on the MSR-
Action3D. Notice that most of the eigenvectors focus on joints that are relevant
and can discriminate between the performed actions. So in this dataset, only
a few body part combinations are relevant where some joints like the hips are
irrelevant for the human actions, which is indicated by the small size of the
joints.

2.3 Classification

The obtained action features fp can be classified using any off-the-shelf clas-
sifier like SVM. In our experiments, we use a non-linear classifier based on
PLS, namely Kernel-PLS (KPLS) [27, 29]. As training data, we have for each
video clip the label and the feature vector fp which are transformed so that
all its entries are positive. While the features define the set X , the class labels
are encoded by the set Y. As kernel, we use the intersection kernel defined as
Ki,j =

∑
l min

(
fpi

(l), fpj
(l)
)
.

3 Datasets and Experiments

We choose four challenging datasets to evaluate our approach for human action
recognition. The datasets are MSR-Action3D [22], 3D Action Pairs [23], MSR-
DailyActivity3D1, and TUM Kitchen dataset [30]. For all the experiments in the
following sections, we used the same parameters (number of bins) to construct
our pose features. Empirically, we evaluated the impact of feature quantization
and measured the average classification accuracy over three different splits only
for the MSR-Action3D dataset for various quantizations of length r, azimuth α,

1 http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
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(a) 3 bins for r (b) 4 bins for r

(c) 5 bins for r (d) 6 bins for r

Fig. 5. Recognition accuracy for different feature quantizations for length r, azimuth
α, and zenith φ. The plots show the accuracy when the number of bins changes. There
are several configurations that give a good performance. Among them we use 5, 18,
and 9 as the number of bins for length, azimuth, and zenith, respectively.

and zenith φ of the joint locations, joint velocities, and joint movement normals.
The results are shown in Figure 5. While several configurations give a good per-
formance, we chose 5, 18, and 9 as the number of bins for length, azimuth, and
zenith, respectively. Our experiments use these configurations for feature extrac-
tion on all pose datasets. For all experiments, we learn the classifier parameters
using 5-fold cross validation. This also includes the number of eigenvectors.

3.1 MSR-Action3D

The MSR-Action3d dataset is an action dataset captured with a RGB-D camera
and designated for gaming-like interactions. It consists of 567 temporally seg-
mented action sequences and contains 20 actions, each performed 2 − 3 times
by 10 different subjects. The actions are: high-arm-wave, horizontal-arm-wave,
hammer, hand-catch, forward-punch, high-throw, draw-x, draw-tick, draw-circle,
hand-clap, two-hand-wave, side-boxing, bend, forward-kick, side-kick, jogging,
tennis-swing, tennis-serve, golf-swing, pick-up and throw. We exclude 10 se-
quences as in [20] and operate on the X,Y screen coordinates along with their
corresponding depth.

For evaluation, we follow the work in [20, 23] and consider two evaluation
tasks: (i) The cross-subject setup where we train our model using the actions
of subjects 1,3,5,7,9 and report the results on the rest [20]. (ii) The second
task reports the system performance on the average accuracy on all 252 (5-5)
cross-subject splits [23]. Using the first task, Figure 6 (a) shows the individual
contribution of each joint feature with respect to the number of projection vec-
tors obtained by PLS. The combinations of the three features fl, fv, and fn,
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(a) MSR-Action3d (b) 3D Action Pairs

(c) MSR-DailyActivity (d) TUM Kitchen(segmented)

Fig. 6. Recognition accuracies for different numbers of eigenvectors and various feature
combinations.

which capture joint location, velocity, and their correlation, clearly boost the
performance in comparison to each single feature or feature pair. Using all three
features and 10 PLS-projections, an accuracy of 92.3% is achieved.

We further evaluated the impact of soft-binning in Figure 7 (a). Without soft-
binning the descriptor is more sensitive to style variations and binning artifacts.
Soft-binning therefore improves the results by a margin.

Figure 7 (b) compares PLS with linear discriminant analysis (LDA) [31,
32]. While PLS relies only on the between-class covariance matrix [26], which
results in (8), LDA also takes the intra-class covariances for each class into
account. In practice, however, the matrix based on intra-class covariances can
be often singular, specially in cases where the number of training samples is
less than the feature dimension. This can be observed in Figure 7 (b) where the
performance drops when the number of eigenvectors increases. In contrast, PLS
does not suffer from singularities. However, both approaches perform better than
a baseline that concatenates the joint features described in Section 2.1 without
learning a compact representation as described in Section 2.2 and that uses a
SVM for classification. For the SVM and KPLS, we use an intersection kernel.
Figure 7 (c) also compares KPLS and SVM using our representation described
in Section 2.2 for a varying number of eigenvectors.

Table 1 compares our approach with the state-of-the-art on this dataset. In
this case, the number of eigenvectors is estimated on the training data by 5-
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(a) (b) (c)

Fig. 7. Performance evaluation on MSR-Action3D dataset. (a) Impact of soft binning
(b) Comparison of LDA and PLS (c) Comparison of KPLS and SVM classifiers

Table 1. Recognition accuracy for MSR-Action3D dataset. The methods use different
data modalities where S denotes skeleton data and D depth. TP denotes the use of a
temporal pyramid.

Method [33] [20] [34] [23] [35] [21] [19] [36] Ours Ours(TP)

Modality D+S D+S D D D S S S S S

Accuracy(%) 92.67 88.2 86.5 88.36 89.3 91.7 90.22 89.48 91.5 90.1

fold cross validation. Our approach achieves an accuracy of 91.5%. It performs
comparable to the state-of-the-art [33] and performs better than most other
skeleton-based approaches. The temporal pyramid does not improve the results
since the dataset contains short, well-defined actions where temporal invariance
is beneficial. We verify further the robustness of our features against different
subjects by evaluating our features on all 252 (5-5) possible splits. In this
task we achieved a mean accuracy of 88.38% and standard deviation of 0.027
compared to 82.15%±4.18 in [23] establishing our method’s robustness against
cross-subject variations for human action recognition.

The training and testing time on the MSR-Action3D standard split is 27
and 14 seconds, respectively. More precisely, the classification time required for
a video clip comprising 55 frames is 161ms where the feature extraction step takes
148ms. The approach [21] provides comparable results in terms of classification
time, however, the training time is much more expensive since each frame is
classified by a kNN classifier. We also compared with the recent approach [36],
which uses dynamic time warping and requires many mappings between Lie
group and tangential space. Using the provided source code [36], classification of
a single video clip of 58 frames requires around 20 seconds. All the experiments
were conducted on an Intel Core i7 CPU with 3.40GHz and 8Gbyte RAM. This
shows that our approach is both very efficient for training and testing.

3.2 3D Action Pairs Dataset

This dataset emphasizes on particular scenarios where motion and shape cues
are highly correlated. It comprise of six pairs of actions, such that within each
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Table 2. Recognition accuracy for 3D Action Pairs. The methods use different data
modalities where S denotes skeleton data and D depth. TP denotes the use of a
temporal pyramid.

Method MMTW [33] Actionlets [20] HON4D[23] Ours Ours(TP)

Modality D+S D+S D S S

Accuracy(%) 97.22 82.22 96.67 92.0 99.4

pair the motion and the shape cues are similar, but their temporal correlations
vary. The action pairs are: Pick up a box/Put down a chair, Lift a box/Place a
box, Push a chair/Pull a chair, Wear a hat/Take off hat, Put on a backpack/Take
off a backpack, and Stick a poster/Remove a poster. We evaluate our framework
using the same cross-subject evaluation protocol as in MSR-Action3D.

Figure 6 (b) shows the individual performance of each feature for different
projections. For the datasets, the correlation features fn outperform the loca-
tion and velocities features since they capture temporal-spatial correlations of
the action classes better. The best performance is, however, achieved when all
features are used.

We compare our approach with the state-of-the-art on this dataset in Table 2.
As for the other dataset, the number of eigenvectors is estimated on the training
data by 5-fold cross validation. Our algorithm achieves 92.0%. When a temporal
pyramid is used, it achieves 99.4% and outperforms the other methods. The
performance boost of the pyramid can be explained by the classes. These are
activities that consist of smaller sub-actions in a specific order, which can be
well captured by the temporal pyramid.

3.3 MSRDailyActivity

This dataset has been captured with an RGB-D camera to mimic daily human
activities in a living room. There are 16 different actions, each performed by
10 subjects twice, once standing and the other while sitting. The actions are:
drink, eat, read book, call cellphone, write on a paper, use laptop, use vacuum
cleaner, cheer up, sit still, toss paper, play game, lie down on sofa, walk, play
guitar, stand up, sit down. The standard task for this dataset aims at cross
subject evaluation as in MSR-Action3D, where we train on the odd numbered
subjects and test on the rest. Figure 6 (c) shows the individual accuracies of
the different features. Unlike MSR-Action3D and 3D Action Pairs datasets, the
joints location feature (fl) in this dataset outperforms both velocity and normal
features. This is because many actions in this dataset are of static or merely
static nature (e.g. call cellphone, play game, use laptop). However, our combined
features outperform the individual features and achieve an overall accuracy of
70.0%. With a temporal pyramid, the accuracy is further improved to 73.1%
accuracy. Compared to previous work [20], our method outperforms their results
of 68.0% by 5.1%.
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(a) (b)

Fig. 8. Evaluation results on the TUM Kitchen dataset (a) Sample frame-level pre-
diction where the x-axis shows the time span of the video sequence with ground-truth
annotations and the y-axis shows the predicted class label with confidences. (b) Con-
fusion matrix of the unsegmented video sequence of the TUM Kitchen dataset (Best
viewed in colors)

3.4 TUM Kitchen Dataset

The TUM kitchen dataset focuses on a home-monitoring scenario using a multi-
view camera setup (4 cameras). The dataset provides 3d human pose data esti-
mated by a markerless full-body tracker. Our evaluation criteria considers two
tasks: (i) segmented test data and (ii) unsegmented test data as in [16]. On both
tasks, we used the episodes 0-2,0-8,0-4,0-6,0-10,0-11,1-6 for testing and the re-
maining 13 for training. However, in the first task we assume that the videos are
already segmented while in the second task we perform continuous classification.
The evaluation criteria for the unsegmented case follows the protocol described
in [16], where the average class accuracies is measured on a frame-level. We use
the skeleton with 13 joints for evaluation and do not count the errors at the tran-
sition frames between annotations with a margin of 4 frames on both sides as in
[16]. For the first task, Figure 6 (d) presents a detailed overview of the average
recognition accuracies over all classes for each feature along with their combina-
tion. Our algorithm achieves for this task an average accuracy of 86.65% over
all classes.

On the second task, we evaluated the performance of our approach using a
fixed sliding window of 30 frames that was determined empirically. This task
is more challenging as the dataset stands for actions of arbitrary time stamps
ranging from 10 to 150 frames. The evaluation considers the average accuracy
on frame level over all classes. Our algorithm achieves an average accuracy of
82.5% as compared to 80.03% in [16]. Figure 8 (a) depicts the prediction of
our model for an unsegmented action sequence from the TUM dataset. While
Figure 8 (b) shows the confusion matrix for all classes.

3.5 2D vs. 3D Pose

Recent advances in pose estimation introduce new opportunities towards action
recognition in challenging environments. For example, several applications in
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[16–18] show that pose estimation is vital towards generalizable, robust, and
efficient action recognition. However, most estimation methods reconstruct 2d
poses from monocular views, failing to provide view-invariant descriptors for
action recognition.

Table 3. Recognition accuracy (%) for the TUM dataset. We compare a 2d appearance
based approach [16], 2d versions of our features, 3d features obtained by mapping the
2d pose to 3d, and 3d features computed from the provided 3d poses, which have been
estimated using all four camera views.

Camera Camera 1 Camera 2 Camera 3 Camera 4

HF + 2d appearance features [16] 68.00 70.00 68.00 65.00

KPLS + joint features from 2d pose 65.66 65.19 63.95 62.51

KPLS + joint features from 3d pose
estimated from 2d pose of one camera view 77.61 77.78 78.23 78.47

KPLS + joint features from 3d pose
estimated from all camera views 82.5

We therefore compare action recognition using 3d pose features and 2d pose
features. To this end, we project the 3d pose of each frame to the 4 camera views
and perform action recognition with our 2d pose features as described in Sec-
tion 2.1. The evaluation protocol is the same as for the unsegmented sequences
of TUM.

Table 3 shows the classification accuracies obtained for each of the four cam-
era views. As opposed to the previously reported result for 3d pose features,
action recognition accuracies in 2d show a significant drop of almost 20% in
recognition rates on all 4 cameras. The performance is also lower than the one
reported for the 2d appearance approach [16], which does not use high-level
features but low-level features based on optical flow and gradients.

In order to investigate if the performance loss comes from the inherent depth
ambiguity of 2d poses or the view sensitiveness of the representation based on
2d poses, we learn a mapping from 2d to 3d pose by non-linear regression. Given
a set of 2d training poses of J joints x ∈ R2∗J and their corresponding 3d
poses y ∈ R3∗J , we linearly scale the individual body parts so that the distance
between the central shoulder and the central hip joint is constant. Then we learn
a mapping function Φ : R2∗J → R3∗J that maps the observed 2d poses of one
camera view to their 3d representation. The non-linear regression is implemented
by KPLS [29] with a radial basis kernel, where X = R2∗J and Y = R3∗J . The
bandwidth of the kernel is σ = 0.01.

Instead of encoding 2d poses by a discriminative representation learned from
2d pose features, we can also predict for a single camera and each frame the
3d pose from the observed 2d pose. The predicted 3d poses are then used for
learning the discriminative representation from 3d pose features as described
in Section 2.2. Table 3 compares the obtained accuracies. Since the predicted
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3d poses from a single camera are not as accurate as the 3d poses provided by
the dataset, which have been estimated by a multi-view human pose estimation
algorithm, also the recognition accuracy with the features computed from the
predicted poses is lower. However, the representation based on the predicted 3d
poses shows a significant performance boost over the corresponding represen-
tation based on 2d poses. It is also interesting to note that the performance is
around 78% for all views while the 2d features show more performance variation
among views. Furthermore, the 2d appearance-based approach of [16] is outper-
formed. This result underlines the benefit of view-invariant pose features and
indicates that 3d pose estimation instead of 2d pose estimation from monocular
videos has the potential to improve action recognition.

4 Conclusion

We have presented a framework for action recognition from 2d and 3d poses.
The approach is very efficient for training and testing and achieves state-of-
the-art performances on several datasets. This has been achieved by focusing
on the the most essential information that characterizes an action, namely the
relative locations of the joints, the velocities of the joints, and the correlations
between locations and velocities denoted as movement normals. Together with
a discriminative approach to learn a basis for the features, we obtain an ac-
tion representation that outperforms other representations that are much more
expensive to compute. We finally compared 2d and 3d pose features and con-
clude that learning a mapping from 2d pose to 3d pose to obtain view-invariant
features can boost the performance significantly.
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