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1 Runtime

Throughput: While ATS is a super-light module, there is still a small cost as-
sociated with I/O operations. For a DeiT-S network with a single ATS stage, the
sampling overhead is about 1.5% of the overall computation which is negligible
compared to the large savings due to the dropped tokens. To further elabo-
rate on this, we have reported the throughput (images/s) of the DeiT-S model
with/without our ATS module in Table 1. As it can be seen, the speed-up of our
module is aligned with its GFLOPs reduction.

Batch Processing: While for most applications the inference is performed for
a single image or video, ATS can also be used for inference with a mini-batch.
To this end, we rearrange the tokens of each image so that the sampled tokens
are in the lower indices. Then, we remove the last tokens completely to reduce
the computation. This way, we only process m tokens, where m = maxi(K

′
i +1)

over all images i of the mini-batch. In the worst case scenario (e.g . a very large
minibatch), we will keep all K+1 first tokens after rearrangement. This will still
reduce the computation by a factor of N+1

K+1 . For example, using a mini-batch of
size 512 on the ImageNet validation set, m is 129 in Stage 7 of the DeiT-S+ATS
model, which is smaller than the total number of tokens (197). Therefore, we
discard at least 68 tokens in stage 7 even in a mini-batch setting. Moreover,
for the fully connected layers in a transformer block, which requires most of
the computation [7], we can flatten the mini-batch dimension and forward only
non-zero tokens of the whole mini-batch in parallel through the fully connected
layers.
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Table 1. Runtime comparison: We
run the models on a single RTX6000
GPU (CUDA 11.0, PyTorch 1.8, image
size: 224×224). We average the value of
throughput over 20 runs. We add ATS
to multiple stages of the DeiT-S model
and fine-tune the network on the Ima-
geNet dataset.

Model Params (M) GFLOPs Throughput Top-1

Deit-S [9] 22.05 4.6 1010 79.8

Deit-S+ATS 22.05 2.9 1403 79.7

Fig. 1. Effect of K: We varied the value
of K in the ATS module to study the effect
of K on the top-1 accuracy. K=48 corre-
sponds to 2 GFLOPs. The backbone model
is DeiT-S pre-trained on ImageNet-1K.

2 The Effect of K

In Fig. 5 of the main paper, we varied the value ofK to achieve different GFLOPs
levels (Top-1 Accuracy vs. GFLOPs). In Fig. 1, we study the effect of varying
K in the ATS module of the single-stage DeiTS+ATS model with fine-tuning.
Interestingly, even sampling only 48 tokens (2 GFLOPs) achieves 75% accuracy.

3 ATS Integration Without Further Training

One of the most important aspects of our approach is that it can be added to
any pre-trained off-the-shelf vision transformer. For example, our not fine-tuned
multi-stage DeiT-S+ATS model (Fig. 5(c) in the paper) has only a 0.6% (Ta-
ble 1 in the paper) top-1 accuracy drop while it has improved the efficiency by
about 1.6 GFLOPs without any further training of the backbone model. We also
observe the same performance on video data. As reported in Table 2, our not
fine-tuned XViT+ATS model has only a 1.1% top-1 accuracy drop while it has
improved the efficiency by about 329 GFLOPs without any further training of
the backbone model. This capability of our ATS module roots back in its adap-
tive inverse transform sampling strategy. Our ATS module samples informative
tokens based on their contributions to the classification token. Uninformative to-
kens that only slightly contribute to the final prediction receive lower attention
weights for the classification token. Therefore, the output classification token will
be only marginally affected by removing such redundant tokens. On the other
hand, the redundant tokens are less similar to the informative tokens and receive
lower attention weights for those tokens in the attention matrix. Consequently,
they do not contribute much to the value of informative tokens and eliminating
them does not change the way informative tokens are contributing to the output
classification token.
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Table 2. Our ATS module is added to XViT [2] pre-trained on Kinetics-600.

Model Top-1 GFLOPs

XViT+ATS Not-Finetuned(16×) 83.4 521
XViT+ATS Finetuned(16×) 84.4 521
XViT(16×) 84.5 850

4 Attention Map Visualization

As shown in Fig. 2, the attention maps become more focused on the birds and
less on the background at the later stages, which is aligned with our observations
on the sampled tokens at each stage.

Fig. 2. Visualization of the sampled tokens and attention maps of a not fine-tuned
multi-stage DeiT-S+ATS.

5 Implementation Details

In our experiments for image classification, we use the ImageNet [4] dataset
with 1.28M training images and 1K classes. We evaluate our adaptive models,
which are equipped with the ATS module, on 50K validation images of this
dataset. In our experiments for action recognition, we use the Kinetics-400 [5]
and Kinetics-600 [3] datasets containing short clips (typically 10 seconds long)
sampled from YouTube. Kinetics-400 and Kinetics-600 consist of 400 and 600
classes, respectively. The versions of Kinetics-400 and Kinetics-600 used in this
paper consist of approximately 261k and 457k clips, respectively. Note that these
numbers are lower than the original datasets due to the removal of certain videos
from YouTube. Our networks for image classification are trained on 8 NVIDIA
Quadro RTX 6000 GPUs and for action recognition on 8 NVIDIA A100 GPUs.

5.1 DeiT + ATS

Training To fine-tune our adaptive models, we follow the DynamicViT [8] train-
ing settings. We use the DeiT model’s pre-trained weights to initialize the back-
bones of our adaptive network and train it for 30 epochs using AdamW opti-
mizer. The learning rate and batch size are set to 5e-4 and 8× 96, respectively.
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We use the cosine scheduler to train the networks. For both multi and single
stage models, we set K = 197 during training.

Evaluation We use the same setup as [9] for evaluating our adaptive mod-
els. To evaluate the performance of our multi-stage DeiT-S+ATS model with
different average GFLOPs levels of 3, 2.5, and 2, we set Kn = max(⌊ρ ×
#InputTokensn⌉, 8) in which ρ is set to 1, 0.87, 0.72, respectively, and n is
the stage index. For the single-stage model, we set K = 108, 78, 48 to evaluate
the model with different average GFLOPs levels of 3, 2.5, and 2.

5.2 CvT + ATS

We integrate our ATS module into the 1st to 9th blocks of the 3rd stage of the
CvT-13 [10] and CvT-21 [10] networks. For both CvT models, we do not use any
convolutional projection layers in the transformer blocks of stage 3.

Training To train our adaptive models, we follow most of the CvT [10] network’s
training settings. We use the CvT model’s pre-trained weights to initialize the
backbones of our adaptive networks and train them for 30 epochs using AdamW
optimizer. The learning rate and batch size are set to 1.5e-6 and 128, respectively.
We use the cosine scheduler to train the networks.

Evaluation To evaluate our CvT+ATS model, we use the same setup as [10].

5.3 PS-ViT + ATS

Training To fine-tune our adaptive models, we follow the PS-ViT [11] train-
ing settings. We use the PS-ViT model’s pre-trained weights to initialize the
backbones of our adaptive network and train it for 30 epochs using AdamW op-
timizer. The learning rate and batch size are set to 5e-4 and 8×96, respectively.
We use the cosine scheduler to train the networks.

Evaluation To evaluate our CvT+ATS model, we use the same setup as [11].

5.4 XViT + ATS

We integrate our ATS module into the stages 3 to 11 of the XViT [2] network.
Training To train our adaptive model, we follow most of the XViT [2] network’s
training settings. We use the XViT model’s pre-trained weights to initialize
the backbone of our adaptive network and train it for 10 epochs using SGD
optimizer. The learning rate and batch size are set to 1.5e-6 and 64, respectively.
We use the cosine scheduler to train the networks.
Evaluation To evaluate our XViT+ATS model, we use the same setup as [2].

5.5 TimeSformer + ATS

We integrate our ATS module into the stages 3 to 5 of the TimeSformer [1]
network.
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Fig. 3. The Adaptive Token Sampler (ATS) can be integrated into the self-attention
layer of any transformer block of a vision transformer model (top). The ATS module
takes at each stage a set of input tokens I. The first token is considered as the classi-
fication token in each block of the vision transformer. The attention matrix A is then
calculated by the dot product of the queries Q and keys K, scaled by

√
d. Having se-

lected the significant tokens, we then sample the corresponding attention weights (rows
of the attention matrix A) to get As. Finally, we softly downsample the input tokens
I to output tokens O using the dot product of As and V. Next, we forward the output
tokens O through a Feed-Forward Network (FFN) to get the output of the transformer
block.

Training To train our adaptive model, we follow most of the TimeSformer [1]
network’s training settings. We use the TimeSformer model’s pre-trained weights
to initialize the backbones of our adaptive networks and train it for 5 epochs
using SGD optimizer. The learning rate and batch size are set to 5e-6 and 32,
respectively. We use the cosine scheduler to train the networks.
Evaluation To evaluate our TimeSformer-HR+ATS and TimeSformer-L+ATS
models, we use the same setup as [1].

5.6 Integrating ATS into a Transformer Block

Unlike a standard transformer block in vision transformers, we assign a score to
each token and use inverse transform sampling to prune the rows of the attention
matrix A to get As. Next, we get the output O = AsV and forward it to the
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Feed-Forward Network (FFN) of the transformer block. We visualize the details
of our ATS module, which is integrated into a standard self-attention layer in
Fig. 3.

6 Ablation

6.1 Score Assignment

In the main paper, we analyzed the impact of using different tokens to calculate
the significance scores S. In all of our experiments, we suggested keeping the
classification token since the loss is defined on this token and discarding it may
negatively affect the performance. To represent the importance of this token
experimentally, we sum over the attention weights of all tokens (rows of the
attention matrix) to find the most significant tokens. We show this in Fig. 4 as
Self-Attention Score (CLS Enforced). In contrast to our previous experiments,
we allow ATS to remove the classification token when it is of low importance
based on the significance scores S. We show the results of this experiment in
Fig. 4 as Self-Attention Score (CLS Not Enforced). As it can be seen in Fig. 4,
discarding the classification token reduces the top-1 accuracy.

Table 3. Comparison of the inverse trans-
form sampling approach with the top-K se-
lection. We finetune and test two different
versions of the multi-stage DeiT-S+ATS
model: with (1) top-K token selection and
(2) inverse transform token sampling. We
report the top-1 accuracy of both networks
on the ImageNet validation set. For the
model with the top-K selection approach,
we set Kn = ⌊0.865 × #InputTokensn⌉
where n is the stage index. For example,
K3 = 171 in stage 3.

Method Top-1 acc GFLOPs

Top-K 78.9 2.9
Inverse Transform Sampling 79.7 2.9

Fig. 4. Impact of allowing ATS to dis-
card the classification token on the net-
work’s accuracy. The model is a single
stage DeiT-S+ATS without finetuning.

6.2 Candidate Token Selection

As mentioned in the main paper, we employ the inverse transform sampling
approach to softly downsample input tokens. We investigated this in Section
4 of the paper. To better analyze it, we also evaluate the performance of our
trained multi-stage DeiT-S+ATS model when picking the top K tokens with the
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highest significance scores S. To this end, we trained our DeiT-S+ATS network
with the top-K selection approach and compared it to our DeiT-S+ATS model
with the inverse transform sampling method. As it can be seen in Table 3, our
inverse transform sampling approach outperforms the top-K selection with and
without training (Fig 5(a) in paper). As discussed earlier, our inverse transform
sampling approach does not hardly discard all tokens with lower significance
scores and hence provides a more diverse set of tokens for the following layers.
This sampling strategy also helps the model to gain a better performance after
training, thanks to a more diversified token selection.

6.3 ATS Placement

To evaluate the effect of our ATS module’s location within a vision transformer
model, we add it to different stages of the DeiT-S network and evaluate it on the
ImageNet validation set without finetuning the model. To have a better com-
parison, we set the average computation costs of all experiments to 3 GFLOPs.
As it can be seen in Table 4, integrating the ATS module into the first stage
of the DeiT-S model results in a poor top-1 accuracy of 73.1%. On the other
hand, integrating the ATS module into stage 3 results in a 78.5% top-1 accu-
racy. As mentioned before, earlier transformer blocks are more prone to predict
noisier attention weights for the classification token. Therefore, integrating our
ATS module into the first stage performs worse than incorporating it into the
stage 3. Although the attention weights of the stage 6 are less noisy, we have
to discard more tokens to reach the desired GFLOPs level of 3. For example in
stages 0, 3, and 6, we set K to 130, 108, and 56, respectively. The highest accu-
racy is obtained when we integrate the ATS module into multiple stages of the
DeiT-S model. This is because of the progressive token sampling that occurs in
a multi-stage DeiT-S+ATS model. In other words, a multi-stage DeiT-S+ATS
network can gradually decrease the GFLOPs by discarding fewer tokens in the
earlier stages, while a single-stage DeiT-S+ATS model has to discard more to-
kens in the earlier stages to reach the same GFLOPs level. We also added the
ATS module into all stages, yielding average GFLOPs of 2.6 and 76.9% top-1
accuracy.

Table 4. Evaluating the integration of the ATS module into different stages of DeiT-
S [9].

Stage(s) 0 3 6 3-11

Top-1 Accuracy 73.1 78.5 77.4 79.2
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6.4 Adding ATS to Models with Other Token Pruning Approaches

To better evaluate the performance of our adaptive token sampling approach,
we also add our module to the state-of-the-art efficient vision transformer EViT-
DeiT-S [6]. EViT [6] introduces a token reorganization method that first identi-
fies the top-K important tokens by computing token attentiveness between the
tokens and the classification token and then fuses less informative tokens. In-
terestingly, our ATS module can also be added to the EViT-DeiT-S model and
further decrease the GFLOPs, as shown in Table 5. These results demonstrate
the superiority of our adaptive token sampling approach compared to static to-
ken pruning methods. We integrate our ATS module into stages 4, 5, 7, 8, 10,
and 11 of the EViT-DeiT-S backbone and fine-tune them for 10 epochs following
our fine-tuning setups on the ImageNet dataset discussed earlier.

Table 5. Evaluating the EViT-DeiT-S [6] model’s performance when integrating the
ATS module into it with Kn = ⌊0.7×#InputTokensn⌉ where n is the stage index.

Model Top-1 acc GFLOPs

EViT-DeiT-S (30 Epochs) [6] 79.5 3.0
EViT-DeiT-S (30 Epochs)+ATS 79.5 2.5
EViT-DeiT-S (100 Epochs) [6] 79.8 3.0
EViT-DeiT-S (100 Epochs)+ATS 79.8 2.5

7 More Visualizations

We show more visual results in Fig. 5. We select several images of the ImageNet
validation set with various amounts of detail and complexity. We visualize the
progressive token sampling procedure of our multi-stage DeiT-S+ATS model for
the selected images. The number of output tokens of each ATS module in the
multi-stage DeiT-S+ATS model is limited by the number of its input tokens,
which is 197. Our adaptive model samples a higher number of tokens when the
input images are more cluttered. We can also observe that the sampled tokens
are more scattered in images with more details compared to more plain images.
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Fig. 5. Visualization of the gradual token sampling procedure in the multi-stage DeiT-
S+ATS model. We integrate our ATS module into the stages 3 to 11 of the DeiT-S
model. The tokens that are sampled at each stage of the network are shown for images
that are ordered by their complexity (from low complexity to high complexity). We
visualize the tokens, which are discarded, as masks over the input images. As it can be
seen, a higher number of tokens are sampled for more cluttered images while a lower
number of tokens are required when the images contain less details. Additionally, we
can see that the sampled tokens are more focused and less scattered in images with
less details.
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