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Abstract— Animating hand-object interactions is a frequent
task in applications such as the production of 3d movies.
Unfortunately this task is difficult due to the hand’s many
degrees of freedom and the constraints on the hand motion
imposed by the geometry of the object. However, the causality
between the object state and the hand’s pose can be exploited
in order to simplify the animation process. In this paper,
we present a method that takes an animation of an object
as input and automatically generates the corresponding hand
motion. This approach is based on the simple observation that
objects are easier to animate than hands, since they usually
have fewer degrees of freedom. The method is data-driven;
sequences of hands manipulating an object are captured semi-
automatically with a structured-light setup. The training data
is then combined with a new animation of the object in order
to generate a plausible animation featuring the hand-object
interaction.

I. INTRODUCTION

When humans interact with objects, hand and object mo-
tions are strongly correlated. Moreover, a hand manipulates
an object usually with a purpose, changing the state of the
object. Vice versa an object has certain affordances [6], i.e.,
it suggests a certain functionality. Consider the clamshell
phone in Fig. 1 as an introductory example. Physical forces
are applied to pick up such a phone and to open it. Once the
phone is opened, the keys with the digits suggest dialing a
number.

The affordances of an object have the potential to ease
hand animation in the context of hand-object interaction, e.g.,
given the clamshell phone and a number to dial, the necessary
hand motions to make a call can be synthesized. This is
particularly interesting when the object has fewer degrees
of freedom (DOFs) than the hand (e.g., opening the phone
requires just a one-dimensional rotation) or when the DOFs
are largely independent (like in the case of the separate digits
of the phone). Animating such an object is easier for an artist
than animating the hand or both. Ideally, simple scripting of
object state changes infers a complete hand animation to
carry out these changes.

Inspired by these considerations, we present a method to
animate a manipulating hand conditioned on an animation of
the manipulated object. The approach is data-driven, so we
require that the object has previously been observed during
manipulation. A training phase involves a semi-automatic
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Fig. 1. Two frames of an animation demonstrating the usage of a clamshell
phone. The hand animation is automatically generated from the given phone
animation.

acquisition of hand poses and object poses from structured-
light data. The pose of an object always comprises its trans-
lation and rotation. In case of articulated objects or objects
consisting of several connected rigid parts, the object’s pose
also includes information regarding the arrangement of its
parts. Based on the captured hand and the tracked object, we
infer 1) the various states of the object during manipulation,
2) the hand configurations that cause object state transitions,
and 3) the spatio-temporal correlations between key hand
poses and key object poses. For instance, the state of the
phone can be either closed or open and a specific temporal
hand movement is required for opening and closing. Data
acquisition and training is required only once for a new
object.

For animation, the object pose and contact points option-
ally created by the artist are used to generate hand poses
for key frames. The hand pose transitions that have been
observed during training then form the basis for hand pose
interpolation to obtain a plausible hand-object animation.
With this technique an artist can quickly produce a great
variety of different animations without the need of acquiring
new data.

Compared to previous work on hand-object anima-
tion [11], [5], [18], [13], [14], [15], [16], our approach
handles articulated objects and hand-object interactions with
significant changes of contact points over time, e.g., opening



a clamshell phone and dialing a specific number as shown in
Fig. 1. It is neither limited to rigid objects nor to a specific
musical instrument. Furthermore, the relevant object states
and the corresponding hand poses are inferred from training
data within a spatio-temporal context. Our data acquisition
is non-invasive because we use a marker-less vision system.

II. RELATED WORK

A. Hand-Object Interaction in Robotics and Vision

A taxonomy of hand poses with regard to the grasping of
objects was provided in [3]. Grasp quality has been studied
in robotics [2]. For example, given a full 3d model and
a desired grasp, the stability of grasping can be evaluated
based on pre-computed grasp primitives [17]. In [22], 3d
grasp positions are estimated for a robotic hand from image
pairs in which grasp locations are identified. For this, a 2d
grasp point detector is trained on synthetic images.

In [10], manipulative hand gestures are visually recog-
nized using a state transition diagram that encapsulates task
knowledge. The person has to wear special gloves, and
gestures are simulated without a real object. [4] recognizes
grasps referring to the grasp taxonomy defined in [3], using
a data glove. In [9], task relevant hand poses are used to
build a low dimensional hand model for marker-less grasp
pose recognition. In [12], visual features and the correlation
between a manipulating hand and the manipulated object are
exploited for both better hand pose and object recognition.
Recently, a real-time method was presented in [20] that
compares observed hand poses to a large database containing
hands manipulating objects. In contrast, our method for hand
pose estimation is not constrained to a set of examples and
comes with the capability to generalize.

B. Animating Hand-Object Interaction

Many approaches in computer graphics are concerned with
realistic hand models. For example, in [1] an anatomically
based model is animated by means of muscle contraction.
However, there has been less work with respect to hand-
object interaction. Some approaches address the synthesis
of realistic static grasps on objects [14] or grasp-related
hand motion [18], [13], [15], [16]. Li et al. [14] treat grasp
synthesis as a 3d shape matching problem: grasp candidates
are selected from a large database by matching contact
points and surface normals of hands and objects. Pollard
and Zordan [18] propose a grasp controller for a physically
based simulation system. To obtain realistic behavior, the
parameters of the controller are estimated from motion se-
quences captured with markers. A similar method is used by
Kry and Pai [13] where hand motion and contact forces are
captured to estimate joint compliances. New interactions are
synthesized by using these parameters for a physically based
simulation. Recently, Liu [15], [16] formulated the synthesis
of hand manipulations as an optimization problem where
an initial grasping pose and the motion of the object are
given. Besides grasping motions, hand motions for musical
instruments have also been modeled [11], [5]. In these works,

a hand plays a specific musical instrument, e.g., violin or
guitar.

We now classify our approach and at the same time point
out differences to the other works.

1) Our approach is data-driven as we exploit observations
of real manipulations to ease the synthesis of new ani-
mations. This is a common strategy with regard to the
animation of manipulating hand motion, since manual
modeling of hand-object interaction does not achieve
realistic results. However, in contrast to our method
most data-driven systems use invasive techniques like
markers or gloves [14], [18], [13].

2) We consider not only grasping but also manipulations
where contact points change dramatically during hand-
object interaction. Works like [11], [5] in which musi-
cal instruments are played are other notable exceptions.

3) The hand is controlled by the state of the manipulated
object. In [15], [16] a hand is also controlled by means
of the manipulated object, but their objects are not
articulated and typically only grasped. Moreover, an
initial grasp has to be defined which is not necessary
with our method. In [11], [5], a hand plays violin or
guitar. The hand is somehow controlled by the object (a
certain musical score is requested), but in those works
the object state does not involve a significant geometric
deformation of the object. [18] also do not deal with
articulated objects, and the hand state is determined by
a grasp controller and not by a manipulated object.

III. LEARNING BY HUMAN DEMONSTRATION

Our goal is to generate animations of hands manipulating
an object by animating the object only. To this end, we
fuse several types of information. On the one side, there
is the object animation created for example in Maya. On the
other side, we use information regarding the manipulation
of the respective object (hand poses in relation to the object,
possible articulations of the object, timing information). The
latter is obtained from human demonstration.

A. Capturing Object Manipulation from Range Data

All our observations are retrieved by a structured-light
setup, delivering dense 2.5d range data and color infor-
mation in real-time [23]. Using this setup we observe the
manipulation of a specific object by a hand and gather
information regarding a) the fully articulated hand pose and
b) the object’s surface geometry and the object pose.

Hand Pose Our method requires knowledge about the manip-
ulating hand. For this, we use a hand tracker [8] that operates
on a graphical model in which each hand segment is a node
(Fig. 2(a)). First, the observed depth information is compared
to the hand model (Fig. 2(b)) to compute a data term for
each hand segment. Then, anatomical constraints between
neighboring hand segments are introduced via compatibility
terms. In each time step, samples are drawn locally around
the hand segment states of the last time step (Fig. 2(c)),
the observation model is evaluated, and belief propagation



(a) Graph (b) Hand Model (c) Local samples

Fig. 2. Hand tracking. (a) Graphical model for inference. (b) Hand model
with a skeleton and ruled surfaces for the skin. (c) Depth data and hand
segment samples. Color encodes relative observation likelihood: green is
highest, red is lowest. The palm has uniform observation likelihood. An
arrow indicates the viewing direction of the camera.

is performed1 to find a globally optimal hand pose. For
initialization, the hand pose is determined manually in the
first frame.

Object occlusions complicate hand tracking. Conceptually,
the tracker is designed to handle this aggravated scenario.
However, there are still situations in which the hand pose
cannot be resolved correctly because the observation is too
corrupted. Hence, we manually label the segment positions
in some key frames, making the training process semi-
automatic.

Object Geometry and Pose As range scans of the object
are captured continuously, we register these scans online and
build up a coherent mesh of the already observed parts of the
surface, as demonstrated in [21]. Example meshes obtained
by this procedure are shown in Fig. 3. With the partial mesh
of the object available, we determine in an offline process the
object’s 6d pose (translation and orientation) for each frame
of a sequence containing the object and some manipulation.
This is done by fitting the mesh to the observation with ICP.

For articulated objects we produce a separate mesh for
each extreme articulation. In the example of the phone one
mesh represents the phone closed state and a second one the
phone open state. We then fit the respective mesh to the data
with ICP, depending on the object state. However, this leaves
us without a registration during object state transitions from
one state to the other.

B. Identifying Articulated Object States

There is a strong dependency between the state of an artic-
ulated object and its usage. For instance a closed clamshell
phone is treated differently than an open one. Identifying
the articulated states of an object manipulated in front of
the structured-light setup is key to extracting manipulation
knowledge. We approach the issue with a distance matrix for
all frames of an observed sequence. To measure the distance
between two range scans S1 and S2, we first remove all 3d
points that have skin color. For each remaining point p of
scan S1, the closest point qp in S2 is found after global ICP
alignment. To obtain a symmetric measure, we compute the

1using libDAI v0.2.2 (http://www.libdai.org)

(a) Camera (b) Clamshell phone (c) Cup

Fig. 3. Partial object meshes created by integrating several range scans.

smallest distances in both directions and take the sum as the
distance:

d(S1, S2) =
∑
p∈S1

‖p− qp‖+
∑
q∈S2

‖q − pq‖. (1)

Fig. 4(a) shows the distance matrix for a sequence of 177
frames in which the camera is manipulated. The lens of
the camera first emerges and then returns to the original
position. The two different states - lens completely moved
in or out - are visible. To obtain a significant measure for
frame segmentation, we compute the standard deviation for
each column of the distance matrix (Fig. 4(b)). High values
indicate frames in which the object is in one of the two
binary states.

(a) Distance matrix
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Fig. 4. Detecting object states in observed data. (a) Distance matrix for a
sequence of 177 frames in which the camera is manipulated. Dark means
similar. (b) Standard deviation of the columns of the distance matrix.

C. Transition Intervals of Object and Hand

A manipulating hand is typically most active when it
causes the object to pass from one state to another (object
state transition). In order to find the hand poses that produce
a certain object transition, we look for corresponding hand
transition intervals. In the easiest case, hand transition inter-
vals are temporally identical with object transition intervals.
This is usually the case when the object is physically forced
into the new state, e.g., the clamshell phone is opened by
a push. However, hand transition intervals can also differ
temporally from the object transitions.

Fig. 5 shows three frames of the camera sequence analyzed
in Section III-B. The tracked hand pushes an activation



button on the camera, and thereby causes the first object state
transition visible in Fig. 4(b). All three frames are relevant
and should be reflected in the animation. The camera has a
time delay, and by the time the lens state changes the finger
already starts to move upwards again.

(a) frame 10 (b) frame 50 (c) frame 75

Fig. 5. Three frames showing an observed hand that pushes an activa-
tion button on the camera. The black stick-model skeleton illustrates the
estimated hand pose. The registered mesh of the camera is drawn in red.
In this case we excluded the lens so that the same mesh can be registered
throughout the complete sequence.

More generally speaking, hand motion performed for
object manipulation can be approximated by a sequence of
characteristic key poses, each with some temporal offset
with respect to the object state transition. We assume that
significant hand poses are those surrounding intervals of
rapid change in hand state space (excluding wrist translation
and rotation). To reduce noise from this high dimensional
state space, we apply principal component analysis (PCA).

Fig. 6(a) shows the projection of the hand poses of the
camera sequence to the first principal component. The two
relevant hand states are visible at −30 and 30. The figure can
be interpreted as follows: the index finger of the manipulating
(right) hand is extended in the beginning of the sequence. It
then approaches the activation button of the camera, presses
the button, and then raises again. This causes the lens of
the camera to emerge (zoom). This hand motion is shortly
after repeated, this time with the purpose to make the lens go
back. Fig. 6(b) focuses on frames 0 to 100 of the sequence
and the first object state transition. The beginning and end
of each transition interval of the hand are expressed relative
to the middle of the object state transition, i.e., the lens is
in the middle of emersion (Fig. 4(b)). Finally, the tracked
sequence is divided into a series of hand transition intervals
indicated by the arrows in Fig. 6(b).

IV. ANIMATION FRAMEWORK

Fig. 7 gives an overview of our method. The previous
section shows how to acquire and process training examples
(Fig. 7 (left) - training). We now describe how to create a new
animation. First, the artist chooses a hand to be animated,
and hand retargeting is performed. Then the artist defines
an object animation (Fig. 7 (right) - animation). Finally, the
training information and the artist’s input are combined to
generate a new animation (Fig. 7 (bottom)).

A. Hand Retargeting

All hand poses estimated from the structured-light data
exhibit the anatomical dimensions of the demonstrating hand,
and are specified using the tracking hand model which
consists of local hand segments. For visualization we use
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Fig. 6. (a) The two states of the hand are indicated by the values−30 (index
finger extended) and 30 (index finger flexed). The sequence starts with
the extended index finger (frame 0). Around frame 20, the finger flexes to
press the activation button on the camera, causing the lens to emerge. After
frame 50, the index finger begins to extend again. The same hand motion
is repeated, starting near frame 90, to make the lens go back again. (b)
The beginning and end of each transition interval of the hand are expressed
relative to the middle of the object state transition, i.e., the lens is in the
middle of emersion. Red arrows indicate the transition from extended to
flexed index finger and vice versa.

Observation Artist

hand pose
object pose
object state

object transformation
object state
contact points

object transitionshand transitions
object transitions

key frames animation

Training Animation

Fig. 7. Animation procedure. Observations of a new object are processed
only once for training. A new object animation can be created in Maya,
optionally including contact points. The training data is then used together
with the object’s animation to generate an animation featuring hand-object
interaction.

a more accurate hand model composed of a 3d scan of a
hand controlled by a 26 DOF forward-kinematics skeleton
in Maya (see Fig. 1).

To retarget the observed hand poses to the new anatomy,
we adapt the length of the phalanges and the proportions of
the palm. In particular, we preserve the position of the finger
tips in space and elongate or shorten the finger segments from
farthest to closest to the palm, respecting joint angles. After
this, the proportions of the palm, i.e., the relative positions
of the attachment points of the five fingers, are set. Finger
and palm adaptation may create gaps between the fingers and
the palm. We therefore apply the rigid motion to the palm
that minimizes these gaps. After adapting the anatomy, we
map the hand poses from the state space of the tracking hand
model to that of the Maya skeleton.

B. Object Animation

Based on partial meshes created by integrating several
range scans (Fig. 3), we created three Maya models (Fig. 8).
In the case of the phone, a joint was added to enable



Fig. 8. Rough object models created in Maya on the basis of the partial
meshes. The phone contains a joint controlling the angle between main body
and display. For the camera a cylinder was added to represent the lens. The
mesh of the cup was created by mirroring and is almost closed.

the animation of the opening and closing process. For the
camera, a polygonal cylinder represents the lens. As input
to our system, the artist creates an animation of the object,
varying translation, rotation, and the object’s articulation over
time. Articulation is represented by continuous parameters,
e.g., the translation of the lens of the camera or the angle of
the joint of the phone. In addition, the artist can optionally
specify contact points between the hand and the model in
desired key frames, e.g., when the animated hand should
dial a specific digit.

C. Combining all Information
At this point, the information from the training data and

the artist can be combined. Contact points defined by the
artist are used to compute hand key poses. These key poses
are derived taking into consideration 1) the desired contact
points and 2) all hand poses observed for a certain articulated
pose of the object. Fig. 9 shows all hand poses of a training
sequence observed while the clamshell phone is open.

Fig. 9. Hand poses observed in a training sequence while the phone is open.
Red samples have a lower probability and are penalized during optimization.

We seek the hand pose which is close to the observed
hand poses and realizes the contact best without intersecting
the object’s geometry. We perform inference by running
belief propagation on the hand graph. Note that this inference
procedure is the same used for tracking, however, the local
likelihood enforces the criteria mentioned above and not
conformity with depth data. See [7] for details.

Other key frames result from the defined object state
transitions (Section IV-B). Their midpoints determine the

timing of the corresponding hand pose transitions observed
in Section III-C. Hand pose interpolation between key frames
of the hand is performed as follows:
• If the animator wants to pause in a certain object state

this leads to a simple freeze.
• Between key frames specified via contact points, a

linear interpolation regarding the joint angles of the
animated hand is applied. The time warping is non-
linear and reflects the assumption that human hands at
first approach their targets fast but slow down in the
end [19]. We transfer this observation to individual hand
segments. The duration of the transition is normalized to
t = [0, 1]. The angle vector φ contains three angles with
respect to the rotation of a certain joint and is defined
by

φt = φt=0 +
√
t · (φt=1 − φt=0). (2)

The square root of t causes a decrease of the speed as
t approaches 1.

• For hand transitions between key frames caused by
object state transitions, we follow a two-stage proce-
dure. Initially, we temporally scale the observed hand
transition, to synchronize it with the artist’s prescription.
However, this is more or less a replay and does not
suffice. Observed transitions are characterized by a key
frame at their start and end. An ending key frame
and the subsequent starting key frame may be quite
different, hence, the final hand animation has to blend
out such abrupt changes. We formulate this as an opti-
mization problem that strikes a balance between staying
close to the observed transitions, while producing good
blends between their boundaries:

argmin
dΘt

∑
t

‖dΘt−dΘ̃t‖2 +α · ‖Θ0 +
∑

t

dΘt−Θ1‖2.

A transition is split into increments dΘt, and dΘ̃t

represents the corresponding increments of the stretched
replay. Hence, the first term enforces compliance with
the replay. The second term ensures the blending. Θ0

and Θ1 are the joint angles at the start of two subsequent
transitions. α is a user parameter and controls the trade-
off between compliance with the stretched replay and
smooth blending. In our experiments we set α to 10.

V. RESULTS

We now present results of the proposed method with
respect to the three objects introduced earlier: the camera, the
cup, and the phone. We also discuss the additional example
of a mortar and the appendant pestle. Tracking is required
only once for training. The artist can then create animated
sequences by only defining the (articulated) state of the
object. Our models are quite rough, but they suffice for
illustration and could be replaced by high quality ones.

The example of the mortar and the pestle is the most
basic one, but illustrates well how animated sequences can
clarify the intended usage of tools. The animation depicted in



Fig. 10. Generating a sequence with a mortar and a pestle used for crushing. The animation (right) is based on a single observed frame showing a hand
holding the pestle (left). The estimated hand pose in that frame is expressed in the coordinate system of the pestle, and the crushing movement of the
pestle was defined in Maya.

Fig. 11. Generating a sequence involving manipulation of the camera. (top,left) Three frames of an observed sequence in which the hand and the camera
were tracked. The estimated hand pose is indicated by the black stick-model skeleton, the partial mesh of the camera registered with the data is drawn in
red. In the observed sequence, the lens of the camera emerges and goes back once. (top,right) Close-up of the rendered model of the camera, once with
retracted lens and once with emerged lens. (bottom) Frames of the animated sequence. In the complete sequence, the zoom emerges and retracts twice,
triggering the respective hand motions with the temporal offset observed in real data.

Fig. 10 (right) is based on a single observed frame showing
a hand holding the pestle (see Fig. 10 (left)). The estimated
hand pose in that frame is expressed in the coordinate system
of the pestle, and the crushing movement of the pestle was
defined in Maya. The mortar itself plays only a passive role.

The example of the camera (Fig. 11) is more advanced
because the lens can be in or out, and temporal dependencies
have to be considered: the index finger approaches the button
and starts to flex again before the lens comes out. In the
tracked sequence (top row, left), the demonstrator presses
the button on the camera twice, causing the lens of the
camera to emerge and then to retract again. In the object
animation created in Maya, the zoom emerges and retracts
twice, triggering the respective hand movements to create the
final animation (two cycles of the bottom row).

The case of the cup is a little different. Since the cup
consists of a single rigid body, the artist can only animate
its translation and rotation in Maya. However, to model the
grasping process, we augment the cup’s state space with a
binary flag indicating whether the animated cup is moving

or not. When it does move, a firm grasp of the hand on
the handle must be established. Consequently, the process of
grasping must be initiated before the artist wants to change
the position of the cup. This temporal offset, the key hand
poses, and the hand pose transitions between key poses are
again obtained from the observation. Fig. 12 is dedicated
to the cup example. In the tracked sequence (top row), the
cup is grasped, lifted, put down, and released. In contrast,
in the animation (middle row), the cup is not only lifted
but also poured out. Two close-ups (bottom row) illustrate
this difference. The cup model was created by mirroring the
corresponding mesh and has almost no holes.

Finally, we come to the clamshell phone. The artist con-
trols its translation and rotation, as well as the articulated
state (phone closed or open). In addition, object contact can
be enforced in desired frames in order to let the animated
hand dial an arbitrary number. The tracked sequence is
shown in the top row of Fig. 13. To track the object, we
registered the respective mesh (phone closed or open) with
the data. The tracked hand initially holds the closed phone.



Fig. 12. Generating a sequence involving manipulation of the cup. (top) The tracked sequence. Hand poses are drawn in black, the registered mesh of
the cup in red. The cup is grasped, lifted up, put down, and released. No pouring is demonstrated. (middle) An animated sequence in which the cup is not
only lifted but also poured. The movement of the cup and the pouring together with the corresponding hand motion results from the object animation in
Maya. (bottom) Close-up of one tracked and one animated frame.

The phone is then opened and the digits from one to nine are
dialed in order. Thereafter the phone is closed again. In the
animation (middle row), the phone is first picked up. This
results from a simple rigid transformation of the phone in its
closed state. Then, the phone is swung open. In this case the
timing of the animation is different than that of the observed
demonstration, so the observed hand pose transition has to be
stretched. While the phone is open, the animated hand dials
a number defined by the artist. Finally, the phone is closed
again, and a rigid transformation is applied to lay the phone
down. Some texture information was added to the model in
Maya. Close-ups are provided in the bottom row.

VI. CONCLUSIONS

We presented a data-driven approach for animating object
manipulation. While the artist has full control of the object
when creating an initial object animation, our approach
automatically generates the corresponding hand motion. To
this end, we assume that a previously observed manipulation
of the object has been captured. Once the data has been
processed by our semi-automatic acquisition system and the
states of the object have been identified, new animations can
be created easily using standard 3d software like Maya. Our
current implementation requires that the observed and the
animated object are very similar. This, however, could be
compensated by acquiring a dataset of objects. Since our
model is data-driven and not physical, arbitrary deformable
objects cannot be handled. Nevertheless, our experiments
have shown that our approach is able to synthesize hand
motions that go beyond grasp motions and that involve

dynamical changes of the articulated state of an object.
Therefore, the proposed method has many applications, e.g.,
it could be used to create virtual video tutorials demonstrat-
ing the usage of tools.
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