
A Bag-of-Words Equivalent Recurrent Neural Network for Action Recognition

Alexander Richard, Juergen Gall

University of Bonn, Römerstraße 164, 53177 Bonn, Germany
{richard,gall}@iai.uni-bonn.de

Abstract

The traditional bag-of-words approach has found a wide range of applications in computer vision. The standard pipeline
consists of a generation of a visual vocabulary, a quantization of the features into histograms of visual words, and a
classification step for which usually a support vector machine in combination with a non-linear kernel is used. Given
large amounts of data, however, the model suffers from a lack of discriminative power. This applies particularly for
action recognition, where the vast amount of video features needs to be subsampled for unsupervised visual vocabulary
generation. Moreover, the kernel computation can be very expensive on large datasets. In this work, we propose a
recurrent neural network that is equivalent to the traditional bag-of-words approach but enables for the application of
discriminative training. The model further allows to incorporate the kernel computation into the neural network directly,
solving the complexity issue and allowing to represent the complete classification system within a single network. We
evaluate our method on four recent action recognition benchmarks and show that the conventional model as well as
sparse coding methods are outperformed.

Keywords: action recognition; bag-of-words; neural networks

1. Introduction

The traditional bag-of-words or bag-of-features model
has been of interest for numerous computer vision tasks
ranging from object classification [1] and discovery [2] to
texture classification [3] and object retrieval [4]. Although
recently other approaches like convolutional neural net-
works [5] or Fisher vectors [6] show better classification re-
sults, bag-of-words models still experience great popularity
due to their simplicity and computational efficiency. Par-
ticularly for the task of action recognition, where state-of-
the-art feature extraction approaches lead to a vast amount
of features even for comparably small datasets [7, 8], com-
pact and efficient feature representations like bag-of-words
are widely used [9, 7, 10, 11, 12].

For most classification tasks, the application of a bag-
of-words model can be subdivided into three major steps.
First, a visual vocabulary is created by clustering the fea-
tures, usually using kMeans or a Gaussian mixture model.
In a second step, the input data is quantized and eventu-
ally represented by a histogram of the previously obtained
visual words. Finally, the data is classified using a support
vector machine.

However, there are some significant drawbacks in this
pipeline. Clustering algorithms like kMeans and Gaussian
mixture models require the computation of distances of all
input features to all cluster centers in each iteration. Due
to the extensive amount of features generated by state-
of-the-art feature extraction algorithms for videos such as
improved dense trajectories [8], it is infeasible to run the

algorithms on the complete data and a subset has to be
sparsely sampled. Although the authors of [7] propose
to run kMeans several times and select the most compact
clustering to ensure a good subsampling, kMeans is usually
not sensitive to the subsampling of local descriptors. How-
ever, the visual vocabulary is created without supervision
and optimized to be a good representation of the over-
all data, whereas for classification, the visual vocabulary
should ideally be optimized to best separate the classes.
In the actual classification step, a non-linear kernel can be
applied to the data to increase the accuracy. While this is
not critical for small datasets, it can become infeasible for
large scale tasks since the kernel computation is quadratic
in the amount of training instances.

In this work, we present a novel approach to model a
visual vocabulary and the actual classifier directly within
a recurrent neural network that can be shown to be equiv-
alent to the bag-of-words model. The work is based on
the preliminary work [13], where we already showed how
to build a bag-of-words equivalent recurrent neural net-
work and learn a visual vocabulary by optimizing the class
posterior probabilities directly rather than optimizing the
sum of squared distances as in kMeans. This way, we
compensate for the lack of discriminative power in tra-
ditionally learned vocabularies. We extend our proposed
model from [13] such that the kernel computation can be
included as a neural network layer. This resolves the com-
plexity issues for large scale tasks and allows to use the
neural network posteriors for classification instead of an
externally trained support vector machine.

Preprint submitted to Computer Vision and Image Understanding September 26, 2016

For evaluation, we use the recognition framework pro-
posed in [7, 8] and replace the kMeans-based bag-of-words
model by our recurrent neural network. We analyze our
method on four recent action recognition benchmarks and
show that our model constantly outperforms the tradi-
tional bag-of-words approach. Particularly on large da-
tasets, we show an improvement by two to five percent-
age points while it is possible to reduce the number of
extracted features considerably. We further compare our
method to state-of-the-art feature encodings that are widely
used in action recognition and image classification.

2. Related work

In recent years, many approaches have been developed
to improve the traditional bag-of-words model. In [14],
class-dependent and universal visual vocabularies are com-
puted. Histograms based on both vocabularies are then
merged and used to train a support vector machine for
each class. Perronnin et al. argue that additional discrim-
inativity is added to the model via the class-dependent
vocabularies. In [15], a weighted codebook is generated
using metric learning. The weights are learned such that
the similarity between instances of the same class is larger
than between instances of different classes. Lian et al.
[16] combine an unsupervised generated vocabulary with a
supervised logistic regression model and outperform tradi-
tional models. Sparse coding has successfully been applied
in [17] and [18]. The first extends spatial pyramid match-
ing by a sparse coding step, while the latter, termed local-
ity constrained linear coding, projects a descriptor into a
space defined by its K nearest codewords.

Goh et al. [19] use a restricted Boltzman machine in
order to learn a sparsely coded dictionary. Moreover, they
show that the obtained dictionary can be further refined
with supervised fine-tuning. To this end, each descriptor is
assigned the label of the corresponding image. Note that
our approach, in contrast, allows for supervised training
beyond descriptor level and on video level directly. Sim-
ilar to our method, the authors of [20] also apply super-
vised dictionary learning on video level and show that it
can improve sparse coding methods. However, while their
approach is limited to optimizing a dictionary in combina-
tion with a linear classifier and logistic loss, our method
allows for the direct application of neural network opti-
mization methods, and allows to include feature mappings
that correspond to the application of various non-linear
kernels. Yet, neither of the approaches has been applied
to action recognition.

Recently, in action recognition, more sophisticated fea-
ture encodings such as VLAD [21] or improved Fisher
vectors [6] gained attention. Particularly Fisher vectors
are used in most action recognition systems [8, 22, 23].
They usually outperform standard bag-of-words models
but have higher computation and memory requirements.
In [24], Fisher vectors are stacked in multiple layers and
for each layer, discriminative training is applied to learn a

dimension reduction, whereas the authors of [25] develop
a hierarchical system of motion atoms and motion phrases
based on Fisher vectors amongst other motion features.
Ni et al. [26] showed that clustering dense trajectories
into motion parts and generating discriminative weighted
Fisher vectors can further improve action recognition. In
order to boost the performance of VLAD, Peng et al. apply
supervised dictionary learning [27]. They propose an iter-
ative optimization scheme that alters between optimizing
the dictionary while keeping the classifier weights fixed and
optimizing the classifier weights while keeping the dictio-
nary fixed, respectively. Investigating structural similari-
ties of neural networks and Fisher vectors, Sydorov et al.
[28] propose a similarly alternating optimization scheme in
order to train a classifier and the parameters of a Gaussian
mixture model used for the Fisher vectors. While both of
these methods greedily optimize the non-fixed part of the
respective model in each step, our approach avoids such
an alternating greedy scheme and allows for unconstrained
optimization of all model parameters at once.

Due to the remarkable success of convolutional neu-
ral networks (CNNs) for image classification [5], neural
networks recently also experience a great popularity in ac-
tion recognition. On a set of over one million Youtube
videos with weakly annotated class labels, Karpathy et
al. [29] successfully trained a CNN and showed that the
obtained features also perform reasonably well on other
action recognition benchmarks. Considering the difficulty
of modeling movements in a simple CNN, the authors of
[30] introduced a two-stream CNN processing not only sin-
gle video frames but also the optical flow as additional
input. Their results outperform preceding CNN based ap-
proaches, underlining the importance of motion features
for action recognition. In [31] and [32], CNN features are
used in LSTM networks in order to explore temporal in-
formation. These approaches, however, are not yet com-
petitive to state-of-the-art action recognition systems such
as [30] or [8]. Although improved dense trajectories [8]
are still the de-facto state-of-the-art for action recognition,
Jain et al. recently showed that they can be complemented
by CNN features [33]. In another approach, the authors
of [34] propose a combination of dense trajectories with the
two-stream CNN [30] in order to obtain trajectory pooled
descriptors.

Our model aims at closing the gap between the two co-
existing approaches of traditional models like bag-of-words
on the one hand and deep learning on the other hand. De-
signing a neural network that can be proven equivalent
to the traditional bag-of-words pipeline including a non-
linear kernel and support vector machine, we provide in-
sight into relations between both approaches. Moreover,
our framework can easily be extended to other tasks by ex-
changing or adding specific layers to the proposed neural
network. For better reproducibility, we made our source
code available.1

1https://github.com/alexanderrichard/squirrel

2

3. Bag-of-Words Model as Neural Network

In this section, we first define the standard bag-of-
words model and propose a neural network representation.
We then discuss the equivalence of both models.

3.1. Bag-of-Words Model

Let x = (x1, . . . , xT) be a sequence of D-dimensional
feature vectors xi ∈ RD extracted from some video and
C = {1, . . . , C} the set of classes. Further, assume the
training data is given as {(x1, c1), . . . , (xN , cN)}. In the
case of action recognition, for example, each observation
xi is a sequence of feature vectors extracted from a video
and ci is the action class of the video. Note that the se-
quences usually have different lengths, i.e. for two different
observations xi and xj , usually Ti 6= Tj .

The objective of a bag-of-words model is to quantize
each observation x using a fixed vocabulary of M visual
words, V = {v1, . . . , vM} ⊂ RD. To this end, each se-
quence is represented as a histogram of posterior proba-
bilities p(v|x),

H(x) =
1

T

T∑

t=1

h(xt), h(xt) =

p(v1|xt)
...

p(vM |xt)

 . (1)

Frequently, kMeans is used to generate the visual vocab-
ulary. In this case, h(xt) is a unit vector, i.e. the closest
visual word has probability one and all other visual words
have probability zero. Based on the histograms, a proba-
bility distribution p(c|H(x)) can be modeled. Typically, a
support vector machine in combination with a non-linear
kernel is used for classification.

3.2. Conversion into a Neural Network

The result of kMeans can be seen as a mixture distri-
bution describing the structure of the input space. Such
distributions can also be modeled with neural networks.
In the following, we propose a transformation of the bag-
of-words model into a neural network.

The nearest visual word v̂ = arg minm ‖x− vm‖2 for a
feature vector x can be seen as the maximizing argument
of the posterior form of a Gaussian distribution,

pKM(vm|x) =
p(vm)p(x|vm)∑
m̃ p(vm̃)p(x|vm̃)

(2)

=
exp

(
− 1

2 (x− vm)ᵀ(x− vm)
)

∑
m̃ exp

(
− 1

2 (x− vm̃)ᵀ(x− vm̃)
) , (3)

assuming a uniform prior p(vm) and a normal distribution
p(x|vm) = N (x|vm, I) with mean vm and unit variance.
Using maximum approximation, i.e. shifting all probabil-
ity mass to the most likely visual word, a probabilistic
interpretation for kMeans can be obtained:

p̂KM(vm|x) =

{
1, if vm = arg maxm̃ pKM(vm̃|x),
0, otherwise.

(4)

Inserting p̂KM(vm|x) into the histogram equation (1) is
equivalent to counting how often each visual word vm is the
nearest representative for the feature vectors x1, . . . , xT of
a sequence x.

Now, consider a single-layer neural network with input
x ∈ RD and M -dimensional softmax output that defines
the posterior distribution

pNN(vm|x) := softmaxm(Wᵀx+ b) (5)

=
exp

(∑
d wd,mxd + bm

)
∑
m̃ exp

(∑
d wd,m̃xd + bm̃

) , (6)

where W ∈ RD×M is a weight matrix and b ∈ RM the
bias. With the definition

W = (v1 . . . vM), (7)

b = −1

2
(vᵀ1v1 . . . v

ᵀ
MvM)ᵀ, (8)

an expansion of Equation (3) reveals that

pNN(vm|x) =
exp

(
− 1

2v
ᵀ
mvm + vᵀmx

)
∑
m̃ exp

(
− 1

2v
ᵀ
m̃vm̃ + vᵀm̃x

) = pKM(vm|x).

(9)

A recurrent layer without bias and with unit matrix
as weights for both the incoming and recurrent connec-
tion is added to realize the summation over the posteriors
pNN(vm|x) for the histogram computation, cf. Equation
(1). The histogram normalization is achieved using the
activation function

σt(z) =

{
z if t < T,

1
T z if t = T.

(10)

Given an input sequence x of length T , the output of the
recurrent layer is

σT

(
h(xT) + σT−1

(
h(xT−1) + σT−2(h(xT−2) + . . .)

))

=
1

T

T∑

t=1

h(xt) = H(x). (11)

So far, the neural network computes the histograms
H(x) for given visual words v1, . . . , vM . In order to train
the visual words discriminatively and from scratch, an ad-
ditional softmax layer with C output units is added to
model the class posterior distribution

p(c|H(x)) = softmaxc(W̃
ᵀH(x) + b̃). (12)

It acts as a linear classifier on the histograms and allows
for the application of standard neural network optimiza-
tion methods for the joint estimation of the visual words
and classifier weights. Once the network is trained, the
softmax output layer can be discarded and the output of
the recurrent layer is used as histogram representation.
The complete neural network is depicted in Figure 1.

3

input sequence

x = x1, . . . , xT

softmax 1

h(xt)

σt

H(x)

softmax 1

p(c|H(x))

W

b

I

I

W̃

b̃

Figure 1: Neural network encoding the bag-of-words model. The
output layer is discarded after training and the histograms from the
recurrent layer are used for classification in combination with a sup-
port vector machine.

Note the difference of our method to other supervised
learning methods like the restricted Boltzman machine
of [19]. Usually, each feature vector xt extracted from a
video gets assigned the class of the respective video. Then,
the codebook is optimized to distinguish the classes based
on the representations h(xt). For the actual classification,
however, a global video representation H(x) is used. In
our approach, on the contrary, the codebook is optimized
to distinguish the classes based on the final representa-
tionH(x) directly rather than on an intermediate quantity
h(xt).

3.3. Equivalence Results

There is a close relation between single-layer neural
networks and Gaussian models [35, 36]. We consider the
special case of kMeans here. Following the derivation
in the previous section, the kMeans model can be trans-
formed into a single-layer neural network. For the other di-
rection, however, the constraint that the bias components
are inner products of the weight matrix rows (see Equa-
tions (7) and (8)) is not met when optimizing the neural
network parameters. In fact, the single-layer neural net-
work is equivalent to a kMeans model with non-uniform
visual word priors p(vm). While the transformation from a
kMeans model to a neural network is defined by Equations
(7) and (8), the transformation from the neural network
model to a kMeans model is given by

vm = (W1,m . . .WD,m)ᵀ, (13)

pNN(vm) =
exp (bm + 1

2v
ᵀ
mvm)∑

m̃ exp (bm̃ + 1
2v

ᵀ
m̃vm̃)

. (14)

3.4. Encoding Kernels in the Neural Network

So far, the recurrent neural network is capable of com-
puting bag-of-words like histograms that are then used in

a support vector machine in combination with a kernel. In
this section, we show how to incorporate the kernel itself
into the neural network.

Consider the histograms h1 and h2 of two input se-
quences x and y,

h1 = H(x), h2 = H(y) ∈ RM . (15)

A kernel K(h1, h2) is defined as the inner product

K(h1, h2) = 〈Ψ(h1),Ψ(h2)〉, (16)

where Ψ is the feature map inducing the kernel. In general,
it is difficult to find an explicit formulation of Ψ. In [37],
Vedaldi and Zisserman provide an explicit (approximate)
representation for additive homogeneous kernels. A kernel
is called additive if

K(h1, h2) =

M∑

m=1

k(h1,m, h2,m), (17)

where k : R+
0 ×R+

0 7→ R+
0 is a kernel induced by a feature

map ψ. k is homogeneous if

k(αh1,m, αh2,m) = αk(h1,m, h2,m). (18)

According to [37], the feature map ψ for such kernels is
approximated by

[ψ(x)]j =

√
κ(0)xL j = 0,√
2κ(j+1

2 L)xL cos(j+1
2 L log x) j odd,√

2κ(j2L)xL sin(j2L log x) j even,

(19)

where κ is a function dependent on the kernel, L is a sam-
pling period, and 0 ≤ j ≤ 2n defines the number of sam-
ples, see [37] for details.

The function [ψ(x)]j is continuously differentiable on
the non-negative real numbers and the derivative is given
by

∂[ψ(x)]j
∂x

=

[ψ(x)]0γ(x) j = 0,

([ψ(x)]j+1(j + 1)L+ [ψ(x)]j)γ(x) j odd,

([ψ(x)]j−1jL+ [ψ(x)]j)γ(x) j even,

(20)

where

γ(x) =
κ(0)L

2[ψ(x)]20
. (21)

Since we apply kernels to histograms, the input to a feature
map is always non-negative in our case. Hence, Equation
(19) can be implemented as a layer in a neural network.
Adding such a feature map layer between the recurrent
layer and the softmax output allows to represent the bag-
of-words pipeline including support vector machine and

4

input sequence

x = x1, . . . , xT

softmax 1

h(xt)

σt

H(x)

feature map layer

ψ(H(x))

softmax 1

p
(
c|ψ(H(x))

)

W

b

I

I

I

W̃

b̃

Figure 2: Neural network encoding the bag-of-words model and a
kernel via its feature map.

kernel computations completely in a single neural network,
cf. Figure 2.

To illustrate that this modification of the neural net-
work is in fact sufficient to model a support vector machine
with a non-linear kernel, consider a simple two class prob-
lem. The classification rule for the support vector machine
is then

rSVM(H(x)) = sgn
(I∑

i=1

αiyiK(H(xi),H(x)) + b
)

(22)

with I support vectors and coefficients αi as well as labels
yi ∈ {−1, 1}. Defining

wc =

I∑

i=1

αiyiΨ(H(xi)) (23)

allows to simplify the decision rule to

rSVM(H(x)) = sgn
(
〈wc,Ψ(H(x))〉+ b

)
. (24)

As can be seen from this equation, the decision rule is
an inner product of a weight vector and the feature map
ψ(H(x)). This is the same operation that is performed in
the neural network, apart from the softmax output layer.
This, however, does not affect the maximizing argument,
so the decision of the support vector machine and the deci-
sion of the neural network are the same if the same weights
and bias are used. Still, in contrast to the support vector
machine, the neural network is trained according to the
cross-entropy criterion using unconstrained optimization.
So in practice, the neural network model usually differs
from the model obtained with a support vector machine.

Note that the approximate feature map increases the
dimension and, thus, also the number of parameters, de-
pending on the number of samples. If the histograms are
of dimension M , the output of the feature map layer is
of dimension M · (2n + 1). In practice, however, n = 2
already works well [37].

3.5. Implementation Details

Neural networks are usually optimized using gradient
based methods such as stochastic gradient descent (SGD)
or Resilient Propagation (RProp; [38]). The gradient of a
recurrent neural network can be efficiently computed using
backpropagation through time (BPTT; [39]). In a forward
pass, the activation yl,t of each layer l is computed for all
timeframes t. The corresponding error signals el,t are then
computed in a backward pass through all layers and time-
frames. Thereby, it is necessary to keep all yl,t in memory
during backpropagation. For long input sequences, this
may be prohibitive since neural networks are usually opti-
mized on a GPU that has only a few GB of memory.

Our model is a specific kind of neural network with
only a single recurrent connection that has the unit ma-
trix as weights. Two special properties emerge from this
structure. First, the order in which the input sequence
x1, . . . , xT is presented to the network does not affect the
output. Second, the error signals of the recurrent layer are
the same for each timeframe, i.e.

erec,T = erec,t for t = 1, . . . , T. (25)

Thus, it is sufficient to store erec,T once and then process
each feature vector in another pass through the network
using standard error backpropagation [40], which requires
much less memory. The training process is illustrated in
Algorithm 1. We indicate the first softmax layer, the re-
current layer, the feature map, and the output layer as
sft, rec, map, and out, respectively. Further, Ic is used to
indicate the unit vector with a one in its c-th component
and Jf (a) is the Jacobi matrix of a function f at a. Given
an input sequence x, the activations of the output layer
are computed in a forward pass. In the following back-
ward pass, the error signals for each timeframe are used
to accumulate the gradients. Note that the algorithm is
a special case of BPTT. Due to the trivial recurrent con-
nection, the activations and error signals at times t < T
do not need to be stored once the error signal erec,T is
computed.

4. Experimental Setup

4.1. Feature Extraction

We extract improved dense trajectories as described
in [8], resulting in five descriptors with an overall number
of 426 features per trajectory, and apply z-score normal-
ization to the data. We distinguish between two kinds of
features: concatenated and separated descriptors. For the
first, all 426 components of a trajectory are treated as one

5

Algorithm 1 Memory efficient gradient computation

1: input: feature sequence x

2: initialize ∆W,∆W̃,∆b,∆b̃ with zero

3: procedure forward-pass

4: for t = 1, . . . , T do

5: ysft,t ← softmax(Wᵀxt + b)

6: yrec,t ← σt(ysft,t + yrec,t−1)

7: delete ysft,t and yrec,t−1

8: ymap,T ← ψ(yrec,T)

9: yout,T ← softmax(W̃ᵀymap,T + b̃)

10: procedure backward-pass

11: eout,T ← yout,T − Ic
12: emap,T ← Jψ(yrec,T) · W̃ · eout,T
13: erec,T ← JσT

(ysft,T) · emap,T

14: for t = 1, . . . , T do

15: esft,t ← Jsoftmax(Wᵀxt + b) · erec,T
16: ∆W← ∆W + xt · eᵀsft,t
17: ∆b← ∆b+ esft,t

18: ∆W̃← ymap,T · eᵀout,T
19: ∆b̃← eᵀout,T

return ∆W,∆W̃,∆b,∆b̃

feature vector. For the latter, the dense trajectories are
split into their five feature types Traj, HOG, HOF, and
two motion boundary histograms MBHX and MHBY in
x- and y-direction.

4.2. kMeans Baseline

For the baseline, we follow the approach of [7]: kMeans
is run eight times on a randomly sampled subset of 100, 000
trajectories. The result with lowest sum of squared dis-
tances is used as visual vocabulary. For concatenated
descriptors, a histogram of 4, 000 visual words is created
based on the 426-dimensional dense trajectories. In case
of separate descriptors, a visual vocabulary with 4, 000 vi-
sual words is computed for each descriptor type separately.
The resulting five histograms are combined with a multi-
channel RBF-χ2 kernel as proposed in [7],

K(i, j) = exp

(
− 1

5

5∑

c=1

D(H(xci),H(xcj))

Ac

)
, (26)

where xci is the c-th descriptor type of the i-th video,
D(·, ·) is the χ2-distance between two histograms, and Ac
is the mean distance between all histograms for descrip-
tor c in the training set. For concatenated features, the
kernel is used with a single channel only. As classifier,
we train a one-against-rest support vector machine using
LIBSVM [41].

4.3. Neural Network Setup

When training neural networks, the trajectories of each
video are uniformly subsampled to reduce the total amount
of input data. The network is trained according to the
cross-entropy criterion, which maximizes the likelihood of
the posterior probabilities. We use RProp as optimization
algorithm and iterate until the objective function does not
improve further. If the neural network output is not di-
rectly used for classification, i.e. if a support vector ma-
chine is used to classify the histograms generated by the
neural network, overfitting is not a critical issue. Thus,
strategies like regularization or dropout do not need to
be applied. Furthermore, we could not investigate any
advantages when initializing with a kMeans model. Nor-
malization, in contrast, is crucial. If the network input
is not normalized, the training of the neural network is
highly sensitive to the learning rate and RProp even fails
to converge. For consistency with the kMeans baseline,
the number of units in the first softmax layer and the re-
current layer that computes the histograms is also set to
4, 000.

4.4. Datasets

For the evaluation of our method, we use four action
recognition benchmarks, two of which are of medium and
two of large scale.

With 783 action clips from 16 classes, the Olympic
Sports dataset [42] is the smallest among the four bench-
marks. The videos show athletes performing Olympic dis-
ciplines and are several seconds long. We use the train/test
split suggested in [42], which partitions the dataset into
649 training videos and 134 test instances. After extract-
ing improved dense trajectories, the training set comprises
about 40 million trajectories and the test set 7.8 million.
For evaluation, mean average precision is reported.

HMDB-51 [43] is a large scale action recognition bench-
mark containing 6, 849 clips of 51 different classes. The
clips are collected from public databases and movies. In
contrast to Olympic Sports, the clips in HMDB-51 are usu-
ally only a few seconds long. The dataset provides at least
101 instances of each action class and the authors propose
a three-fold cross validation. All splits are of comparable
size and after feature extraction, there are 42 million tra-
jectories in the training set and 18 million in the test set.
We report average accuracy over the splits.

In order to validate the applicability of our method to
datasets of different sizes, we also conduct experiments on
a subset of HMDB-51. J-HMDB [11] comprises a sub-
set of 928 videos from 21 action classes. With a range
from 15 to 40 frames, the clips are rather short. We fol-
low the protocol of [11] and use three splits. Each split
partitions the videos into training and test set with an ap-
proximate ratio of 70 : 30. For the training set, about two
million trajectories are extracted for each split. For the
test set, the amount of extracted trajectories ranges be-
tween 700, 000 and 800, 000 depending on the split. Even

6

though the number of clips in the dataset is in the same or-
der as for Olympic Sports, it is clearly the smallest dataset
in our evaluation in terms of extracted trajectories. As for
HMDB-51, average accuracy over the three splits is re-
ported.

The largest benchmark we use is the UCF101 dataset
[44]. Comprising 13, 320 video clips from a set of 101 dif-
ferent action classes, it is about twice as large as HMDB-
51. The dataset contains videos from five major categories
(sports, human-human-interaction, playing musical instru-
ments, body-motion only, and human-object interaction)
and has been collected from Youtube. Again, we follow
the protocol of [44] and use the suggested three splits.
Each split partitions the data in roughly 9, 500 training
clips and 3, 700 test clips, corresponding to 230 million
improved trajectories for the training set and 90 million
for the test set, respectively. Again, we report average
accuracy over the three splits.

For Olympic Sports and HMDB-51, we use the human
bounding boxes provided by Wang and Schmid.2 For the
other datasets, improved dense trajectories are extracted
without human bounding boxes.

5. Experimental Results

In this section, we evaluate our method empirically. In
a first step, the impact of the prior and the difference in
the histograms generated by a standard kMeans model and
our neural network are analyzed. Then, the effect of sub-
sampling the dense trajectories is investigated. We show
that even with a small number of trajectories, satisfying
results can be obtained while accelerating the training time
by up to two orders of magnitude. Moreover, we compare
our model to the standard pipeline for action recognition
from [7, 8] and show that the method is not only bound
to action recognition but is also competitive to some well
known sparse coding methods in image classification. We
also evaluate the effect of approximating the kernel directly
within the neural network as proposed in Section 3.4, fol-
lowed by a comparison to the current state-of-the-art in
action recognition.

5.1. Evaluation of the Neural Network Model

We evaluate the neural network model by comparing
its performance on Olympic Sports to the performance of
the kMeans based bag-of-words model. Moreover, we an-
alyze the difference between the histograms generated by
the neural network and those generated by the kMeans
approach. For neural network training, the number of
trajectories per video is limited to 5, 000 using uniform
subsampling.

As mentioned in Section 3, the neural network im-
plicitly models a visual word prior pNN(vm). Hence, we
compare to an additional version of kMeans in which we

2http://lear.inrialpes.fr/people/wang/improved trajectories

assignment

soft hard

kMeans 84.1% 84.0%
kMeans + prior 83.7% 84.0%
neural network 86.7% 86.3%

Table 1: Comparison of three bag-of-words models: kMeans, kMeans
with prior, and the neural network (Figure 1). For each model,
the histograms are once computed using soft assignment, i.e. the
posterior distribution p(vm|x) is used directly, and once using hard
assignment, i.e. shifting all probability mass to the most likely visual
word.

compute the posterior distribution pKM(vm|x) with a non-
uniform prior pKM(vm). The prior is modeled as relative
frequencies of the visual words. Note that the resulting
model is equivalent to the neural network model and only
differs in the way the parameters are estimated.

When computing histograms of visual words, usually
hard assignment is used as in p̂KM(vm|x) in Equation (4).
This may be natural for kMeans since during the genera-
tion of the visual vocabulary, each observation only con-
tributes to its nearest visual word. For the neural network
model, on the contrary, hard assignment can not be used
during training since differentiability is required. Thus,
it is natural to use the posterior distribution pNN(vm|x)
directly for the histogram computation. However, in Ta-
ble 1 it can be seen that there is no significant difference
between soft and hard assignment for either of the three
methods.

Furthermore, Table 1 reveals that the neural network
is more than 2% better than the kMeans model. However,
the improvement can not be explained by the additional
degrees of freedom, as the kMeans model with non-uniform
prior does not improve compared to the original kMeans
model. Discriminative training allows the neural network
to generate visual words that discriminate well between the
classes. KMeans, in contrast, only generates visual words
that represent the observation space well regardless of the
class labels. We validate this major difference between
both methods by a comparison of the visual word priors.
In Figure 3a, the prior induced by kMeans, pKM(vm), is
illustrated. The probability for all visual words is within
the same order of magnitude. The neural network prior
pNN(vm) is computed by means of Equation (14) and de-
picted in Figure 3b. Almost all probability mass is dis-
tributed over three visual words. All other visual words
are extremely rare, making their occurrence in a histogram
a very discriminative feature.

In Figure 4, the histograms generated by kMeans and
the neural network are compared for four videos from two
different classes, high jump and pole vault. The first col-
umn shows an example frame of the video. The second
and third column show the histograms generated by the
kMeans model and by the neural network, respectively.

7

1 1,000 2,000 3,000 4,000

0

0.5

1

1.5

2

2.5

·10−3

vk

(a) kMeans prior pKM(vm)

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5

·10−1

vk

(b) neural network prior pNN(vm)

Figure 3: Comparison of the visual word prior induced by kMeans and the prior obtained with the neural network on the Olympic Sports
dataset. Note the different scales on the y-axes.

The histograms generated by the neural network are sharper
than those generated by the kMeans model. The two peaks
in the neural network histograms of the high jump videos
at visual word index 3, 000 are a pattern that occurs in
multiple histograms of this class. Similar patterns can
also be observed for neural network histograms of other
classes but usually not for kMeans based histograms, al-
though the example videos from high jump are very similar
in appearance. If the appearance of the videos undergoes
stronger variations as in the pole vault class, these reoccur-
ring patterns are neither observable for the kMeans based
histograms nor for the neural network histograms. Still,
the latter have clearer peaks that lead to larger differences
between histograms of different videos, raising potential
for a better discrimination. This confirms the preceding
evaluation of the results in Table 1.

During training of the neural network, a class poste-
rior distribution p(c|H(x)) is modeled. Using this model
instead of the SVM with RBF-χ2 kernel for classification
is worse than the baseline. For concatenated descriptors,
the result on Olympic Sports is 82.3%. Regularization,
dropout, and adding additional layers did not yield any
improvement. However, considering that the model for
p(c|H(x)) is only a linear classifier on the histograms (cf.
Section 3), the result is remarkable as the kMeans baseline
with a linear support vector machine reaches only 69.6%.

5.2. Effect of Feature Subsampling

We evaluate the runtime and accuracy of our method
when reducing the number of trajectories per video on
Olympic Sports. The networks are trained on a GeForce
GTX 780 with 3GB memory. We limit the number of tra-
jectories per video to values from 150 to 20, 000 via uni-
form subsampling. This corresponds to an overall num-
ber of trajectories between 100, 000 and 12 million. In
Figure 5 (left), the runtime is shown. When sampling

150 trajectories per video, which corresponds to 100, 000
dense trajectories overall, both, our GPU implementation
of kMeans and the neural network training, run for nine
minutes. The training times scales linearly with the num-
ber of trajectories per video. In Figure 5 (right), the per-
formance of the system with limited number of trajectories
is illustrated. For the blue curve, the number of trajec-
tories has only been limited for neural network training,
but the histograms are computed on all extracted trajec-
tories. The performance of the neural network models is
always above the baseline (dashed line). The curve stabi-
lizes around 5, 000 trajectories per video, suggesting that
this number is sufficient for the neural network based bag-
of-words. Note that for kMeans, we observed only small
fluctuations around one percent when changing the num-
ber of clustered trajectories, the subsampling strategy, or
the initialization.

If the histograms for the training and test set are also
computed on the limited set of trajectories (red and green
curve), the performance of the systems is much more sen-
sitive to the number of subsampled trajectories. However,
when more than 5, 000 trajectories per video (overall 3.2
million trajectories) are used for the neural network his-
togram computation, the difference to taking all extracted
trajectories is small. Hence, it is possible to achieve satis-
fying results with only 8% of the originally extracted tra-
jectories, allowing to accelerate both, the histogram com-
putation and the feature extraction itself. A similar reduc-
tion is also possible with kMeans, but the loss in accuracy
is higher, cf. Figure 5.

5.3. Comparison to Other Neural Network Architectures

In this section, we compare our proposed model to
other neural network architectures. Our analysis is twofold:
firstly, we show the importance of video-level training, sec-
ondly, we prove that the bag-of-words equivalent architec-

8

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5
·10−2

vk

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5
·10−2

vk

(a) Example frame (left), kMeans histogram (middle), and neural network histogram (right) for the video high jump/010.avi.

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5
·10−2

vk

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5
·10−2

vk

(b) Example frame (left), kMeans histogram (middle), and neural network histogram (right) for the video high jump/011.avi.

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5
·10−2

vk

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5
·10−2

vk

(c) Example frame (left), kMeans histogram (middle), and neural network histogram (right) for the video pole vault/001.avi.

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5
·10−2

vk

1 1,000 2,000 3,000 4,000

0

1

2

3

4

5
·10−2

vk

(d) Example frame (left), kMeans histogram (middle), and neural network histogram (right) for the video pole vault/005.avi.

Figure 4: Comparison of the histograms generated by the kMeans model and the neural network model for four videos of two different classes
from Olympic Sports. 9

150250 500 1k 2.5k 5k 10k 20k

10

25

50

100

250

500

1000

2000

max. trajectories per video

tr
a
in

in
g

ti
m

e
(m

in
)

150250 500 1k 2.5k 5k 10k 20k

70

75

80

85

90

max. trajectories per video

m
ea

n
a
v
er

a
g
e

p
re

ci
si

o
n

(%
)

baseline

NN

baseline + sub-hist

NN + sub-hist

Figure 5: Effect of feature subsampling on the training time and the performance evaluated on Olympic Sports. Left: Time required to train
the neural network. Right: Performance of the neural network (NN) based bag-of-words. For the blue curve, the number of trajectories has
only been limited for neural network training. For the red and green curve, it has also been limited for the histogram computation on the
training and test set (sub-hist).

Method mAP

Training on frame-level
(a) ours w/o recurrency 62.3%
(b) fine-tuned ImageNet CNN 76.6%
Training on video-level
(c) simple RNN 18.3%
(d) RNN with GRUs 13.3%
(e) attention-based RNN 28.8%
(f) ours 86.7%

Table 2: Comparison of different neural network architectures on
Olympic Sports. Results are reported as mean average precision.

ture is crucial and other recurrent neural networks fail to
obtain good results.

Addressing the first point, we remove the recurrent
connection from our model. The result is a standard feed-
forward network. For training, we assign to each input
frame the class label of the respective video. For inference,
we cut off the last softmax layer and compute a video rep-
resentation by average pooling over the network output of
each frame. Following the same protocol as for our recur-
rent network, the resulting representation is transformed
with a multi-channel χ2 kernel and classified using a sup-
port vector machine. In this setup, each input frame is
treated separately and temporal context is not considered
during codebook training. The resulting loss of accuracy
is significant: the performance drops from 86.7% to 62.3%,
cf. Table 2 (a) and (f). As another example for frame-level
training, we fine-tuned the 51-layer deep residual CNN of
the 2015 ImageNet challenge winning submission [45] on
Olympic Sports. In order to get class posterior probabil-
ities for a complete video, we applied average pooling to
the framewise posteriors. Still, this state-of-the-art CNN

architecture struggles to achieve competitive results.
Addressing the second point, we replace the bag-of-

words equivalent architecture by other recurrent network
architectures. Simple RNN (c) is a neural network with
a single recurrent hidden layer and sigmoid activations.
RNN with GRUs (d) has the same structure but the sig-
moid units are replaced by gated recurrent units [46]. Those
units allow the network to decide when to discard past
frames and when to update the recurrent activations based
on forget and update gates. Not surprisingly, the perfor-
mance of both recurrent architectures is poor. Recurrent
neural networks tend to forget about past inputs exponen-
tially fast, so particularly for long sequences as we have in
our setup, only the end of the video is actually observed
and the crucial parts at the beginning and in the middle
of the video are not considered. Attention-based RNNs
[47] aim to solve this problem. An attention layer learns
weights for each timeframe of a recurrent layer and accu-
mulates the recurrent layer activations according to this
weighting. This way, information is captured along the
complete sequence. Unfortunately, these models have a
large number of parameters and are highly sensitive to
overfitting, especially in case of the huge intra-class varia-
tions in video data. Consequently, the classification result
is better than for traditional recurrent neural networks but
still not competitive to state-of-the-art methods, cf. Table
2 (e).

Summarizing, the results in Table 2 show that both the
specific architecture and the joint training of classifier and
vocabulary on video-level are crucial.

5.4. Evaluation on Various Datasets

We evaluate our method on the four action recogni-
tion datasets Olympic Sports, J-HMDB, HMDB-51, and
UCF101. On J-HMDB, all extracted trajectories are used
for neural network training. On HMDB-51 and Olympic

10

Descriptors: concatenated separate

baseline neural network baseline neural network

Olympic Sports 84.1% 86.7% 84.4% 85.9%
J-HMDB 56.6% 57.6% 59.1% 61.9%
HMDB-51 45.8% 50.6% 52.2% 54.0%
UCF101 67.8% 73.3% 73.3% 76.9%

Table 3: Comparison of the kMeans baseline with the neural network model for concatenated and separate descriptors on four different
datasets.

Sports, we limit the number of trajectories per video to
5, 000 as proposed in Section 5.2. For terms of efficiency,
we further reduce this number to 2, 500 for the largest
dataset UCF101. We conduct the experiments for con-
catenated descriptors, i.e. we directly use a 426 dimen-
sional feature vector for each trajectory, and for separate
descriptors as originally proposed in [7]. The results are
shown in Table 3.

The neural network outperforms the baseline on all da-
tasets. For the smaller datasets J-HMDB and Olympic
Sports that have only few classes, the improvement is be-
tween 1% and 2.6% in case of concatenated descriptors.
For the large datasets, however, the baseline is outper-
formed by around 5%. In case of separate descriptors, the
improvement is smaller but still ranges from 1.5% to 3.6%.

Comparing the neural network with concatenated de-
scriptors (second column of Table 3) and the baseline with
separate descriptors (third column of Table 3) reveals that
both systems achieve similar accuracies. However, for the
baseline with separate descriptors, visual vocabularies and
histograms have to be computed for each of the five de-
scriptors separately. For the neural network with concate-
nated descriptors, in contrast, it is sufficient to train a
single system.

5.5. Application to Image Classification

Although designed to meet some specific problems in
action recognition, our method is applicable to image da-
tasets, too. We compare to existing sparse coding meth-
ods on two small image datasets, Caltech-101 [52] and 15-
scenes [53]. Following the setup of [19], we densely extract
SIFT features, compute spatial pyramids, and use a lin-
ear support vector machine for classification. Note that
our method is not particularly designed for such a set-
ting since we do not train our encoding directly on the
spatial pyramid features that are finally used for classifi-
cation. In contrast to the methods [17, 18, 51, 19], we do
not introduce any sparsity constraints. Still, our method
shows competitive results compared to several other cod-
ing methods, see Table 4.

5.6. Using Explicit Feature Maps

In this section, we analyze the effect of explicit feature
maps that allow to train the complete system in a single

network. We use the network architecture from Figure 2.
Since the multichannel RBF-χ2 kernel from Equation (26)
is not an additive homogeneous kernel, we evaluate three
different additive homogeneous kernels here: Hellinger’s
kernel is defined as

k(h1,i, h2,i) =
√
h1,ih2,i (27)

and its underlying feature map has an exact closed form
solution, ψ(x) =

√
x. It is notable that due to the non-

negativity of the histograms that are fed into the function,
Hellinger’s kernel is equivalent to the application of power
normalization that has been proposed for Fisher vectors
in [6].

Moreover, we examine an additive homogeneous ver-
sion of the χ2 kernel,

k(h1,i, h2,i) = 2
h1,ih2,i
h1,i + h2,i

. (28)

In combination with a support vector machine, the kernel
can be applied directly. When incorporating it into the
neural network, we use the approximation from Equation
(19) with κ(λ) = sech(πλ). Finally, the histogram inter-
section kernel

k(h1,i, h2,i) = min(h1,i, h2,i) (29)

is approximated similarly with

κ(λ) =
2

π(1 + 4λ2)
. (30)

Detailed derivations for the κ functions can be found in [37].
As proposed in [37], we use n = 2 and L = 0.5 for both the
χ2 kernel and the histogram intersection kernel. In case
of concatenated descriptors, this increases the amount of
units from 4, 000 in the histogram layer to 20, 000 in the
feature map layer.

In order to be able to train a single neural network
not only for concatenated descriptors but also for separate
descriptors, each of the five descriptors is handled in an in-
dependent channel within the neural network allowing to
train five independent visual vocabularies. After applica-
tion of the feature map, the five channels are concatenated
to a single channel five times the size of each feature map.
A softmax layer is used for classification on top of the con-
catenated channel. As a consequence, the number of units

11

Method Codebook Size Caltech-101 15-Scenes

Hard assignment [48] 200 64.6% 81.1%
Kernel Codebooks [49] 200 64.1% 76.7%
Soft assignment [50] 1000 74.2% 82.7%

ScSPM [17] 1024 73.2% 80.3%
LLC [18] 2048 73.4% -
Multi-way local pooling [51] 1024× 65 77.8% 83.1%

Unsupervised SS-RBM [19] 1024 75.1% 84.1%
Ours 1024 74.5% 83.5%

Table 4: Comparison of our method to other coding methods on Caltech-101 and 15-scenes.

after application of the feature map is five times larger
than for concatenated descriptors, finally ending up with
100, 000 units. This affects the runtime for both, train-
ing and recognition, and can be particularly important for
larger datasets.

The application of Hellinger’s kernel, the χ2 kernel,
and the histogram intersection kernel in combination with
a support vector machine for concatenated descriptors is
straightforward. In case of separate descriptors, we com-
bine the five histograms by concatenation.

We start with an evaluation of three different neural
network training approaches on the two smaller datasets J-
HMDB and Olympic Sports. Training from scratch starts
with a random initialization of all parameters, init linear
initializes the weights W and bias b with those obtained
from the network from Figure 1 which is trained with a
linear softmax classifier on top of the histogram layer. For
retrain top we took the same initialization but kept it fixed
during training and only optimized the parameters of the
softmax output layer.

The results are shown in Table 5. For concatenated
descriptors, retraining only the top layer leads to the best
results for each feature map on both datasets and train-
ing from scratch performs worst in most cases. For sepa-
rate descriptors, however, retrain top is not always best.
Particularly on Olympic Sports, Hellinger’s kernel fails to
achieve competitive results. Still, for all other cases retrain
top is either best or at least close to the best training strat-
egy. Since it is the fastest among the three strategies, we
find it beneficial particularly for larger datasets.

Based on these results, we stick to the retrain top strat-
egy for large datasets and compare the results to the tra-
ditional bag-of-words model and the neural network plus
support vector machine model from Section 3.2. Table 6
shows the results of each of the three approaches for three
different kernels and both concatenated and separate de-
scriptors. The fourth and eighth column contain the num-
bers from Table 3 in order to provide a comparison to the
originally used multichannel RBF-χ2 kernel. Recall that
this kernel is not homogeneous and additive, so it can not
be modeled as a neural network layer.

For concatenated descriptors, both neural network ap-

proaches usually outperform the kMeans baseline. While
the difference between the kMeans baseline (kMeans +
SVM) and the neural network including the feature map
layer (retrain top) is rather small, a huge improvement can
be observed for the neural network based visual words in
combination with a support vector machine (neural net-
work + SVM). Especially on the larger datasets HMDB-
51 and UCF101, about 6% improvement is achieved. This
is particularly remarkable as the performance of a tradi-
tional bag-of-words model with separate descriptors is al-
most reached although the model with concatenated de-
scriptors is much simpler: Only a single visual vocabulary
with 4, 000 visual words is computed, while separate de-
scriptors have an own visual vocabulary for each descriptor
type, resulting in a five times larger representation.

Analyzing the results for separate descriptors, the neu-
ral network with a feature map corresponding to Hellinger’s
kernel shows surprisingly bad results on all datasets. One
explanation is that the feature map is simply the square
root of each histogram entry, while for all other kernels
the approximate feature map from Equation (19) has to
be used. The number of units in the feature map layer is
increased in the latter case, raising potential for a better
discrimination.

Similar to the results of concatenated descriptors, the
neural network combined with a support vector machine
achieves the best results, whereas the neural network with
a feature map layer yields results comparable to the tra-
ditional bag-of-words model. On all datasets, the best
results have been obtained with separate descriptors and
a neural network plus support vector machine using a χ2

kernel, see second row, sixth column for each dataset. Still,
including a feature map layer also shows competitive re-
sults in most cases while considerably reducing the run-
time. Especially on UCF101, the largest of the datasets,
computation of a non-linear kernel and training a support
vector machine takes 3.9 hours, which is about six times
longer than the time needed to retrain the neural network
with the feature map layer (40 minutes).

A comparison of the results in Table 6 reveals that
the multichannel RBF-χ2 kernel as used in [7] does not
achieve as good results as a simple χ2 kernel with feature

12

concatenated separate

feature map: Hellinger χ2 hist. int. Hellinger χ2 hist. int.

Olympic Sports
from scratch 75.5 84.1 82.9 84.3 81.4 80.4
init linear 81.3 85.0 83.8 83.7 83.0 83.0
retrain top 86.4 85.8 85.8 78.5 83.5 84.1

J-HMDB
from scratch 53.2 52.8 52.4 56.9 45.9 46.2
init linear 50.6 55.1 53.6 57.9 57.2 61.4
retrain top 57.5 56.6 56.7 56.9 60.9 60.5

Table 5: Different training strategies when using a feature map layer.

concatenated separate

hist. RBF-χ2 hist. RBF-χ2

feature map: Hellinger χ2 int. Eq. (26) Hellinger χ2 int. Eq. (26)

Olympic Sports
kMeans + SVM 83.7 84.2 85.5 84.1 85.9 87.1 86.6 84.4
neural network + SVM 85.0 83.0 86.6 86.7 86.4 88.1 87.5 85.9
neural network (retrain top) 86.6 85.8 85.8 - 78.5 83.5 84.1 -

J-HMDB
kMeans + SVM 57.1 56.0 56.8 56.6 60.9 60.0 59.8 59.1
neural network + SVM 59.4 58.5 58.3 57.6 62.8 62.2 61.9 61.9
neural network (retrain top) 57.5 56.6 56.7 - 56.9 60.9 60.5 -

HMDB-51
kMeans + SVM 42.1 43.9 44.0 45.8 51.4 52.4 51.5 52.2
neural network + SVM 48.0 49.3 50.0 50.6 53.6 54.9 54.3 54.0
neural network (retrain top) 44.0 47.3 47.4 - 47.9 50.2 50.0 -

UCF101
kMeans + SVM 72.2 73.1 72.2 67.8 79.2 79.5 78.7 73.3
neural network + SVM 78.8 78.6 77.7 73.3 81.7 81.9 81.1 76.9
neural network (retrain top) 72.7 73.5 73.3 - 73.5 75.7 75.7 -

Table 6: Evaluation of different kernels for the kMeans baseline, the neural network approach with support vector machine classification, and
the neural network including a feature map layer. For the latter, we use the retrain top strategy.

13

concatenation.

5.7. Comparison to State of the Art

In Table 7, our best results - a neural network with-
out feature map layer and a non-multichannel χ2 kernel
- are compared to the state-of-the-art on HMDB-51 and
UCF101. Our approach outperforms other approaches
based on bag-of-words, sparse coding [56], locality con-
strained linear coding (LLC) [18], or neural networks [29,
32]. Particularly on UCF101, the improvement of 8% com-
pared to the original bag-of-words based pipeline is re-
markable. The approach [30] is not directly comparable
since the accuracy is mainly boosted by the use of addi-
tional training data. The approach of [58] outperforms our
method. This method uses a large convolutional neural
network consisting of multiple spatial convolution layers
and a temporal convolution to enable modeling actions of
different speeds. Apart from that method, only the meth-
ods that use Fisher vectors achieve a better accuracy than
our method. However, extracting Fisher vectors is more
expensive in terms of memory than a bag-of-words model.
If Fisher vectors are extracted per frame, the storage of
the features would require around 1 TB for the 2.4 million
frames of UCF101 compared to 35 GB for our method.
For applications with memory and runtime constraints,
our approach is a very useful alternative.

6. Conclusion

In this work, we have proposed a recurrent neural net-
work that allows for discriminative and supervised visual
vocabulary generation. In contrast to many existing cod-
ing and CNN based methods, our method can be applied
on video level directly. Apart from kernel approximations
via explicit feature maps, the network is equivalent to the
traditional bag-of-words approach and differs only in the
way it is trained. Although the best results could be ob-
tained using the neural network for visual vocabulary gen-
eration and a support vector machine for classification, we
have shown that it is possible to also include the kernel
and classification steps into the network while retaining
the performance of the original bag-of-words model. Our
model has been particularly beneficial for large scale data-
sets. Moreover, it allows for a significant reduction in the
amount of extracted features, speeding up training time
and inference without a considerable loss in performance.
Finally, our model can also be applied to other tasks like
image classification. The neural network proves to be com-
petitive with other methods that introduce additional con-
straints like sparsity.

Acknowledgments. Authors acknowledge financial support
by the ERC starting grant ARCA (677650).

References

[1] G. Csurka, C. Dance, L. Fan, J. Willamowski, C. Bray, Visual
categorization with bags of keypoints, in: ECCV Workshop on
statistical learning in computer vision, 2004.

[2] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, W. T. Free-
man, Discovering object categories in image collections, Tech.
rep., Massachusetts Institute of Technology (2005).

[3] J. Zhang, M. Marsza lek, S. Lazebnik, C. Schmid, Local features
and kernels for classification of texture and object categories: A
comprehensive study, International Journal on Computer Vision
73 (2007) 213–238.

[4] J. Sivic, A. Zisserman, Video google: a text retrieval approach
to object matching in videos, in: Int. Conf. on Computer Vision,
2003, pp. 1470–1477.

[5] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classifica-
tion with deep convolutional neural networks, in: Advances in
Neural Information Processing Systems, 2012, pp. 1097–1105.

[6] F. Perronnin, J. Sánchez, T. Mensink, Improving the Fisher
kernel for large-scale image classification, in: European Conf.
on Computer Vision, 2010, pp. 143–156.

[7] H. Wang, A. Kläser, C. Schmid, C.-L. Liu, Dense trajectories
and motion boundary descriptors for action recognition, Inter-
national Journal on Computer Vision 103 (2013) 60–79.

[8] H. Wang, C. Schmid, Action recognition with improved trajec-
tories, in: Int. Conf. on Computer Vision, 2013, pp. 3551–3558.

[9] E. H. Taralova, F. De la Torre, M. Hebert, Motion words for
videos, in: European Conf. on Computer Vision, 2014, pp. 725–
740.

[10] K. K. Reddy, M. Shah, Recognizing 50 human action categories
of web videos, Machine Vision and Applications 24 (2013) 971–
981.

[11] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, M. J. Black, Towards
understanding action recognition, in: Int. Conf. on Computer
Vision, 2013, pp. 3192–3199.

[12] X. Peng, L. Wang, X. Wang, Y. Qiao, Bag of visual words and
fusion methods for action recognition: Comprehensive study
and good practice, Computer Vision and Image Understanding.

[13] A. Richard, J. Gall, A bow-equivalent recurrent neural network
for action recognition, in: British Machine Vision Conference,
2015.

[14] F. Perronnin, C. Dance, G. Csurka, M. Bressan, Adapted vo-
cabularies for generic visual categorization, in: European Conf.
on Computer Vision, 2006, pp. 464–475.

[15] H. Cai, F. Yan, K. Mikolajczyk, Learning weights for codebook
in image classification and retrieval, in: IEEE Conf. on Com-
puter Vision and Pattern Recognition, 2010, pp. 2320–2327.

[16] X.-C. Lian, Z. Li, C. Wang, B.-L. Lu, L. Zhang, Probabilis-
tic models for supervised dictionary learning, in: IEEE Conf.
on Computer Vision and Pattern Recognition, 2010, pp. 2305–
2312.

[17] J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid
matching using sparse coding for image classification, in: IEEE
Conf. on Computer Vision and Pattern Recognition, 2009, pp.
1794–1801.

[18] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-
constrained linear coding for image classification, in: IEEE
Conf. on Computer Vision and Pattern Recognition, 2010, pp.
3360–3367.

[19] H. Goh, N. Thome, M. Cord, J.-H. Lim, Unsupervised and su-
pervised visual codes with restricted boltzmann machines, in:
European Conf. on Computer Vision, 2012, pp. 298–311.

[20] Y.-L. Boureau, F. Bach, Y. LeCun, J. Ponce, Learning mid-level
features for recognition, in: IEEE Conf. on Computer Vision
and Pattern Recognition, 2010, pp. 2559–2566.

[21] H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez,
C. Schmid, Aggregating local image descriptors into compact
codes, IEEE Transactions on Pattern Analysis and Machine In-
telligence 34 (2012) 1704–1716.

[22] X. Peng, C. Zou, Y. Qiao, Q. Peng, Action recognition with
stacked Fisher vectors, in: European Conf. on Computer Vision,
2014, pp. 581–595.

14

Method HMDB-51 UCF101

Traditional models
Improved DT + bag of words 52.2% 73.3%
Improved DT + Fisher vectors [8, 54] (*) 57.2% 85.9%
Improved DT + LLC 50.8% 71.9%
Stacked Fisher vectors [22] (*) 66.8% -
Multi-skip feature stacking [55] (*) 65.4% 89.1%
Super-sparse coding vector [56] 53.9% -
Motion-part regularization [26] (*) 65.5% -
MoFAP [25] (*) 61.7% 88.3%

Neural networks
Two-stream CNN [30] (**) 59.4% 88.0%
Slow-fusion spatio-temporal CNN [29] (**) - 65.4%
Composite LSTM [32] 44.0% 75.8%
TDD + improved DT with Fisher vectors [57] (*) 65.9% 91.5%
factorized spatio-temporal CNN [58] 59.1% 88.1%

Ours 54.9% 81.9%

Table 7: Comparison of our model to published results on HMDB-51 and UCF101. We also provide results with bag-of-words and LLC
encoding as a direct comparison to our method. Methods marked with (*) use Fisher vectors, those marked with (**) use additional training
data.

[23] D. Oneata, J. Verbeek, C. Schmid, Action and event recognition
with Fisher vectors on a compact feature set, in: Int. Conf. on
Computer Vision, 2013, pp. 1817–1824.

[24] K. Simonyan, A. Vedaldi, A. Zisserman, Deep Fisher networks
for large-scale image classification, in: Advances in Neural In-
formation Processing Systems, 2013, pp. 163–171.

[25] L. Wang, Y. Qiao, X. Tang, MoFAP: A multi-level representa-
tion for action recognition, International Journal on Computer
Vision 119 (3) (2016) 254–271.

[26] B. Ni, P. Moulin, X. Yang, S. Yan, Motion part regularization:
Improving action recognition via trajectory selection, in: IEEE
Conf. on Computer Vision and Pattern Recognition, 2015, pp.
3698–3706.

[27] X. Peng, L. Wang, Y. Qiao, Q. Peng, Boosting vlad with super-
vised dictionary learning and high-order statistics, in: European
Conf. on Computer Vision, 2014, pp. 660–674.

[28] V. Sydorov, M. Sakurada, C. H. Lampert, Deep Fisher kernels–
end to end learning of the Fisher kernel Gmm parameters, in:
IEEE Conf. on Computer Vision and Pattern Recognition, 2014,
pp. 1402–1409.

[29] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
L. Fei-Fei, Large-scale video classification with convolutional
neural networks, in: IEEE Conf. on Computer Vision and Pat-
tern Recognition, 2014, pp. 1725–1732.

[30] K. Simonyan, A. Zisserman, Two-stream convolutional net-
works for action recognition in videos, in: Advances in Neural
Information Processing Systems, 2014, pp. 568–576.

[31] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, T. Darrell, Long-term recurrent
convolutional networks for visual recognition and description,
in: IEEE Conf. on Computer Vision and Pattern Recognition,
2015, pp. 2625–2634.

[32] N. Srivastava, E. Mansimov, R. Salakhutdinov, Unsupervised
learning of video representations using LSTMs, in: Int. Conf.
on Machine Learning, 2015.

[33] M. Jain, J. C. van Gemert, C. G. M. Snoek, What do 15,000 ob-
ject categories tell us about classifying and localizing actions?,
in: IEEE Conf. on Computer Vision and Pattern Recognition,
2015, pp. 46–55.

[34] L. Wang, Y. Qiao, X. Tang, Action recognition with trajectory-
pooled deep-convolutional descriptors, in: IEEE Conf. on Com-

puter Vision and Pattern Recognition, 2015, pp. 4305–4314.
[35] W. Macherey, H. Ney, A comparative study on maximum en-

tropy and discriminative training for acoustic modeling in au-
tomatic speech recognition., in: Interspeech, 2003.

[36] G. Heigold, R. Schlüter, H. Ney, On the equivalence of Gaus-
sian HMM and Gaussian HMM-like hidden conditional random
fields., in: Interspeech, 2007, pp. 1721–1724.

[37] A. Vedaldi, A. Zisserman, Efficient additive kernels via explicit
feature maps, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (2012) 480–492.

[38] M. Riedmiller, H. Braun, A direct adaptive method for faster
backpropagation learning: The rprop algorithm, in: IEEE Int.
Conf. on Neural Networks, 1993, pp. 586–591.

[39] P. J. Werbos, Backpropagation through time: what it does and
how to do it, Proceedings of the IEEE 78 (1990) 1550–1560.

[40] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning repre-
sentations by back-propagating errors, Nature 323 (1986) 533–
536.

[41] C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector
machines, ACM Transactions on Intelligent Systems and Tech-
nology 2 (2011) 1–27.

[42] J. C. Niebles, C.-W. Chen, L. Fei-Fei, Modeling temporal struc-
ture of decomposable motion segments for activity classification,
in: European Conf. on Computer Vision, 2010, pp. 392–405.

[43] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, T. Serre, HMDB:
a large video database for human motion recognition, in: Int.
Conf. on Computer Vision, 2011, pp. 2556–2563.

[44] K. Soomro, A. R. Zamir, M. Shah, UCF101: A dataset of 101
human actions classes from videos in the wild, arXiv preprint
arXiv:1212.0402.

[45] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for
image recognition, arXiv preprint arXiv:1512.03385.

[46] K. Cho, B. Van Merriënboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, Y. Bengio, Learning phrase repre-
sentations using rnn encoder–decoder for statistical machine
translation, in: Conf. on Empirical Methods in Natural Lan-
guage Processing, 2014, pp. 1724–1734.

[47] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by
jointly learning to align and translate, in: Int. Conf. on Learning
Representations, 2015.

[48] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spa-

15

tial pyramid matching for recognizing natural scene categories,
in: IEEE Conf. on Computer Vision and Pattern Recognition,
2006, pp. 2169–2178.

[49] J. van Gemert, C. Veenman, A. Smeulders, J.-M. Geusebroek,
Visual word ambiguity, IEEE Transactions on Pattern Analysis
and Machine Intelligence 32 (2010) 1271–1283.

[50] L. Liu, L. Wang, X. Liu, In defense of soft-assignment coding,
in: Int. Conf. on Computer Vision, 2011, pp. 2486–2493.

[51] Y.-L. Boureau, N. Le Roux, F. Bach, J. Ponce, Y. LeCun, Ask
the locals: multi-way local pooling for image recognition, in:
Int. Conf. on Computer Vision, 2011, pp. 2651–2658.

[52] L. Fei-Fei, R. Fergus, P. Perona, Learning generative visual
models from few training examples: An incremental bayesian
approach tested on 101 object categories, Computer Vision and
Image Understanding (2007) 59–70.

[53] L. Fei-Fei, P. Perona, A bayesian hierarchical model for learning
natural scene categories, in: IEEE Conf. on Computer Vision
and Pattern Recognition, 2005, pp. 524–531.

[54] H. Wang, C. Schmid, LEAR-INRIA submission for the thumos
workshop, in: ICCV Workshop on Action Recognition with a
Large Number of Classes, 2013.

[55] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, B. Raj, Beyond Gaus-
sian pyramid: Multi-skip feature stacking for action recognition,
in: IEEE Conf. on Computer Vision and Pattern Recognition,
2015, pp. 204–212.

[56] X. Yang, Y. Tian, Action recognition using super sparse coding
vector with spatio-temporal awareness, in: European Conf. on
Computer Vision, 2014.

[57] L. Wang, Y. Qiao, X. Tang, Action recognition with trajectory-
pooled deep-convolutional descriptors, in: IEEE Conf. on Com-
puter Vision and Pattern Recognition, 2015, pp. 4305–4314.

[58] L. Sun, K. Jia, D.-Y. Yeung, B. Shi, Human action recogni-
tion using factorized spatio-temporal convolutional networks,
in: Int. Conf. on Computer Vision, 2015.

16

	Introduction
	Related work
	Bag-of-Words Model as Neural Network
	Bag-of-Words Model
	Conversion into a Neural Network
	Equivalence Results
	Encoding Kernels in the Neural Network
	Implementation Details

	Experimental Setup
	Feature Extraction
	kMeans Baseline
	Neural Network Setup
	Datasets

	Experimental Results
	Evaluation of the Neural Network Model
	Effect of Feature Subsampling
	Comparison to Other Neural Network Architectures
	Evaluation on Various Datasets
	Application to Image Classification
	Using Explicit Feature Maps
	Comparison to State of the Art

	Conclusion

