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Abstract. We present a crowd simulation that captures some of the
semantics of a specific scene by partly reproducing its motion behaviors,
both at a lower level using a steering model and at the higher level of
goal selection. To this end, we use and generalize a steering model based
on linear velocity prediction, termed LTA. From a goal selection perspec-
tive, we reproduce many of the motion behaviors of the scene without
explicitly specifying them. Behaviors like “wait at the tram stop” or
“stroll-around” are not explicitly modeled, but learned from real exam-
ples. To this end, we process real data to extract information that we
use in our simulation. As a consequence, we can easily integrate real and
virtual agents in a mixed reality simulation. We propose two strategies
to achieve this goal and validate the results by a user study.

1 Introduction

The modeling of human crowds is of enormous interest for a multitude of appli-
cations, ranging from gaming, over movie effects, to evacuation simulators and
urban planning. Humans exhibit a huge variety of motion behaviors that is not
trivial to reproduce in virtual characters. Following the terminology of [17], we
distinguish among three levels of motion behavior: goal setting, steering and lo-
comotion. In this paper we will focus on goal setting and, partly, on steering.
Our goal is to simulate crowds within a specific context. Depending on the envi-
ronment there will be different motion patterns. Whereas people may leisurely
walk in a park, they probably are quite hasty in a business district. Different
environments, which could also be indoor, will also contain different sources, at-
tractors, and sinks where people resp. appear, often go to, or disappear. All these
factors must be accounted for when animating a virtual crowd. Manual specifi-
cation (e.g., scripting) is common, but also very tedious and time consuming. As
alternative, data-driven approaches [8, 9] extract real trajectories from an actual
crowd and use these. Data-driven approaches, however, do not generalize well
and are difficult to adapt to scene changes.
In this paper, we therefore propose to combine rule-based steering models with
data-driven goal selection to minimize the manual work for animators while still
being able to generalize to scene changes. Human steering models have been
studied for several decades in different disciplines. When building a rule-based
steering model, rather than a data-driven approach, one can conveniently inte-
grate this knowledge into simple rules that capture general properties of human

? This project has been funded by TANGO European Project.
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Fig. 1. Method
workflow.

low-level motion. These properties are not expected to be valid only in a specific
scene. The same model can therefore be employed in different situations by sim-
ply adapting the goal selection layer. In this layer, behaviors like “wait at the
tram stop”, “stroll-around” or “go and grab a coffee” are not explicitly scripted
but learned from real examples. This said, user interaction is easy to integrate
in the process, and arbitrary behaviors can be chosen.
Our approach only requires a few minutes (5 to 10) of video recording with

real people moving in the scene. Their trajectories and group memberships are
extracted by means of a semi-automatic tracker similar to the one in [15]. This
video data is processed both to analyze lower level properties such as typical
personal area [4] and to extract the regions in the scene that are relevant for
crowd motion. Based on the extracted trajectories, the destination flow between
the regions is learned, which is a probabilistic goal selection layer that extends
the steering model. To carry out the actual agent motion, we choose to gen-
eralize the LTA steering model [14]. In particular, we generalize the avoidance
component in that model, add a temporal horizon to the collision anticipation
and add the realistic possibility of people walking in groups within the crowd.
Finally, in order to maximally benefit from the real trajectories that one might
have at one’s disposal, we propose the use of mixed crowds, consisting of a blend
of real and virtual trajectories.1 At simulation time, the mix of real vs. virtual
people is a free parameter, allowing the user to adapt crowd density (see Fig. 1).
Contributions: The first contribution of the paper is the introduction of the
destination flow, a probabilistic goal selection layer that extends the steering
model. In another contribution this paper proposes two different, possibly com-
binable, strategies to mix real and individual trajectories in the crowd simulation.
Finally, we generalize the LTA steering model to fit our purposes.

2 Related Work

Autonomous agents are an active area of research since a long time[18, 5, 19, 22].
A detailed review can be found in [20].
Steering models have mostly been used for computer graphics animations and
to simulate evacuation scenarios. However, other fields, such as robotics [21, 24]
and computer vision [1, 14] recently developed interest for such models and came
out with their own solutions.
In this work we will build upon LTA [14], an energy minimization based steering

1 We will call real agents those crowd members the trajectory of whom is derived di-
rectly from captured data, and virtual agents those that are generated by simulation.
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model. As other models [17, 16, 13, 24], LTA uses a linear velocity prediction,
but in different ways. In particular LTA defines a smooth energy function that
depends on the subject velocity. The smooth formulation of the energy function
leads to a straightforward integration of multiple interactions and additional
components (e.g. grouping), like for [5]. However, the choice of the next agent
velocity does not depend on the absolute value of the function, as in the Social
Force model [5], rather on the function shape (i.e. the location of the minima),
making it easy to design and check the model properties. Also geometric mod-
els [24] share this advantage. Contrary to geometric models, however, LTA’s
energy function is differentiable and efficient gradient minimization techniques
can be readily applied. LTA has never been tested before for crowd simulation.
In this paper we improve and generalize the model to make it suitable for such
purpose.
While the majority of the steering models have focused on individual motion,
recently more and more authors propose to include the grouping feature into
the simulation [11, 12, 7]. Using groups, but data-driven, is the approach of [8].
Here, state-velocity pairs are extracted from real data and at simulation time
a combination of them is employed in order to simulate group behaviors. Also
data-driven, a different kind of microscopic model has been proposed by [9]. This
is an example-based model, that uses a database build with real world trajecto-
ries. [6] build a model of the crowd structure and motion, learning these features
from real data. The crowd animation is carried out by selecting collision free tra-
jectories that are consistent with the formation model. The authors show how
models learned from different types of crowd can be combined and result in a
blending of the original models.
Closely related to our work, is the study presented in Chapter 6 of [20]. The
authors here first describe which scene information could be useful to reproduce
a real scene in a simulation. However, the information extraction at this point is
manual and requires a customization for each scene. Furthermore, they use real
tracked trajectories to extract scene specific velocity fields. The velocity fields are
then clustered and virtual agents at simulation time are driven by these fields.
Our approach is different in that we compute region of interest and transitions
among them, rather than extract velocity fields. This allows us to simulate in a
stochastic manner complex scenes, where repetitive behaviors are possible. Last,
we study the mixing of real and virtual agents [25] in the reproduced scene.
Another important aspect of an autonomous virtual agent is the goal selection.
In [23] the intentions of different types of agents are represented by different
flow-charts. In [12], when in the autonomous mode, the crowd responds to events
following the rules specified by the animator. A Finite State Machine is used to
model the goal selection layer both in [2] and in [3]. In these works, the region
structure and the transition rules are manually specified. In our paper we reduce
the concept of intention, or goal, to that of a destination in space and we let the
transitions be learned automatically from the scene.
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3 Steering Model

To simulate crowds we use the steering model presented in [14], termed LTA. In
this model, the next velocity for an agent is computed by minimizing an energy
function that reproduces avoidance and goal-seeking aspects of human walking.
The key aspect of the model is that the decision of the next velocity is based
on the distance of maximum approach dij between pedestrians i and j. In this
paper we generalize the model, with parameters λ, in three directions:

– We substitute the isotropic avoidance component Iij of the original formu-
lation with an anisotropic one:

Iij = exp

(
−dij

T

[
λI,1 0

0 λI,2

]
dij

)
. (1)

– We add to the energy function a grouping term to allow representing groups
of pedestrians walking together.

Gij = dij
T

[
λG,1 0

0 λG,2

]
dij . (2)

– We introduce a temporal horizon T , to limit the computation of the dij to
a realistic time interval.

The function that we minimize at each time step2 for each agent i becomes:

Ei=
∑
j∈Vi

wijIij +
∑

j∈Gij∩Vi

wijGij+SiλS+DiλD , (3)

where wij , Si and Di are the same weights, speed and destination components
as defined in the original paper, Vi is the set of pedestrians that are visible to
subject i and Gi is the set of subjects that are in the same group of subject i.

4 Scene Transitions

The original LTA assumes that the destination zti and the desired speed ui are
known for each subject i. In order to be able to mimic the motion patterns in a
specific scene, we propose to learn a probabilistic model for these quantities. To
this end, we extract the trajectories of real people and the groups from a video
with an interactive tracker [15] and label the static objects Ot manually. We use
cameras from the top (Fig. 3) to capture the entire scene and to facilitate the
tracker job. We also define a set of scene events, E , and the subset At ⊆ E of
active events at time t. In the following, we assume that At and E are given.
Based on the trajectories, we model the desired speed ui by a normal distribu-
tion, where mean µ and variance Σ are estimated from the observed velocities.
As people do not walk with very low speed, we set an additional threshold of

2 Note that we dropped the time dependency to reduce notational clutter.
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Fig. 2. The approximation of a
real trajectory (in blue) for κ =
1 (red), κ = 10 (green) and κ =
100 (magenta). Note how a too
small value of κ will introduce
too many corners while the large
value will miss some.

0.5ms−1 to avoid slow walkers being sampled from the tail of the speed distribu-
tion. In our model, the subjects in the same group share the same desired speed.
To learn the sequence of destinations for each group of subjects, we need to know
the intentional destination of the recorded pedestrians. To this end, we extract
interesting points from the scene by segmenting the trajectories.

4.1 Segmenting the Trajectories

Given a uniformly sampled point trajectory Qi = [p0
i . . .p

T
i ], we are interested

in a sequence of points, or corners, p0
i . . .p

tc
i . . .p

T
i that split the trajectory in

a sequence of sub-tracks. Each of these sub-tracks specifies a unit of motion
that a subject should be able to undertake without any complex path planning
operation. Since thresholding the velocity or the curvature of the trajectories
turned out not to be robust, the problem is solved by a shortest path search in
a graph, as in [10]. The graph is obtained by connecting each pt

i ∈ Qi with all
subsequent points. The cost of the transition from pta

i to ptb
i is defined by

γ(ta, tb) = κ+

tb∑
t=ta

||pt
i − (pta

i +
t− ta
tb − ta

(ptb
i − pta

i ))||2 , (4)

where κ is a fixed cost associated to each split to regularize the number of splits.
The summation in Eq. 4 is the cost of approximating the portion of the trajec-
tory from ta to tb with a straight line. The impact of the regularizer κ is shown
in Fig. 2. We set κ = 10 in this paper. The corners of a trajectory make the
sequence of desired destinations and the movement from one corner to the next
is a transition. Rather than assigning the corner directly to the scene, we ex-
tract R interesting spatial regions from the scene and assign a corner to each of
them. We distinguish between entrance, exit and transition corners and regions
depending on whether they are at the beginning, in the middle or at the end
of the trajectories. The corners are distributed within the region according to a
distribution ρr, with r = 1 . . . R.
In our experiments, we use square cells to represent each region as shown in
Fig. 3, left. The size of each region cell affects the destination flow. We found a
good compromise at 2m edge size. We also define two special regions, create and
destroy to handle agents initialization and termination, respectively. Note that
the same solution can be used for different kinds of region shapes, not necessarily
square cells and user interaction with shape and cell position is straightforward.
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The distribution ρr is estimated using a kernel density estimate over the region
corners, with a normal kernel of 0.2m standard deviation.
In this paper, a group of subjects always share the same intention, and there-
fore the same destination region r. The splitting described in Sec. 4.1 can be
generalized to a group of trajectories by simply averaging the transition costs in
Eq. 4 of the subjects within the same group. In practice, due to the problems
produced by groups that are at the edge of two cells, we count the transitions at
the individual level. A region transition ra → rb is therefore defined by a pair of
consecutive corners in a subject trajectory. The transition probability p(rb|ra)
is estimated by the normalized count of the transitions ra → rb.
The probabilities, however, can change based on the events that are active. We
therefore model the transition probabilities for each active event set At by ac-
cumulating in each pA

t

(ra|rb) only the transitions that are observed when the
corresponding event set is active. We call the set of regions and transitions the
destination flow.

4.2 Simulation

The simulation of a group g of people starts with a transition from the create re-
gion to a entrance region rg, according to the transition probability pA

t

(rg|create).
Every time a new transition rg is sampled for a group, for each subject ig a new
destination point ztig is sampled from the destination region rg, according to

the distribution ρr. The agent motion to the destination ztig is demanded to the
steering model of Sec. 3. Note that the agents are not performing any navigation
task. The destination flow, made mostly of straight paths, partially replaces the
navigation task.
A group g reaches the destination when each subject ig in the group reaches its
individual destination point zig , e.g. when the distance d(pt

ig
, ztig ) is small. We

define an indicator binary variable ntg, that is 1 when the group reached desti-
nation, otherwise it is 0. A group selects a new region ri (possibly the same) at
time t only when nt−1g = 1. More formally, the region transitions that determine
the motion pattern of simulated pedestrians are modeled as

p(rtg|rt−1g ,At, nt−1g ) =

{
δrtg,r

t−1
g

nt−1g = 0

pA
t

(rtg|rt−1g ) otherwise
(5)

where δa,b is the Kronecker function that is 1 if a = b, and 0 otherwise. The
dependencies of the variables described in this section are shown in the graphical
model in Fig. 3. Note how the groups share the same quantities.

5 Mixed Reality

Adding real agents to a simulated scene, or the other way around, can be ben-
eficial to enrich the simulation with specific, possibly actor-played, actions. The
main problem is that the real agents are not aware of the simulated ones. Simply
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Fig. 3. Left: The grids used for the destination flow. We show the 3 kind of corners:
entrance (green), exit (blue) and turn (red). We show the grid for turning points
(magenta) and the two overlapping entrance and exit grid (cyan). Empty cells are not
shown. Right: The dependencies in the goal selection layer. sti is the state of subject
i at time t, given by her position and velocity. Shaded nodes are observed variables.

adding them together will result in general in unlikely configurations, especially
when the density of the scene increases. We propose two possible solutions:
Sampling: Sampling from the destination flow is straightforward, as the model
dependencies contain no directed cycle; see Fig. 3. Each sample produces a dif-
ferent scene simulation. Therefore we can sample repeatedly until a certain cri-
terion, e.g. a minimum number of collisions, is met.
Path-following: Another solution is to allow real agents for small deviations
from their real trajectory. We implement this solution by using a path following
strategy for each subject. In particular, each real subject at time t becomes a
simulated one with her future position at t+2s as destination. The agent desired
speed is the average speed in the next 2 seconds. The limited freedom granted
by this path following strategy will allow to reduce the number collisions. Note
that this strategy can be combined with the previous one.

6 Experiments

Our goal is to reduce to a minimum the amount of manual work for the animator
in order to build a realistic simulation of a specific scene. In order to test our
algorithm, we need therefore to use real data. We will use three real sequences
for our experiments: the Students sequence, a ∼ 3.5 minutes outdoor sequence
has been provided by a third party [9]; the Meeting sequence, 10 minutes long,
recorded in an indoor during the coffee break of a project meeting; the Street
sequence [14] contains people walking in the proximity of a tram stop (the event
“tram” is active when the tram is at the stop with open doors).
Where not available, the ground truth was extracted with the help of the tracker.

6.1 User Study

To validate the quality of the reproduced scene, we set up a user study. We used
2 different video sequences: Meeting and Street. Three 45s long mixtures of real
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and virtual agents were generated for these sequences: 0% (purely simulated),
50% and 100% (real sequence without the path-following strategy of Sec. 5). A
purely simulated sequence was generated also using a random transition matrix3.
We call this last simulation the random simulation. For each simulation, the
entrance time and the composition of the group was decided by the real sequence.
We used a simplified reconstruction of the environment.
Each agent Vi is populated with all the pedestrians within a 10m radius that are
connected to i after a Delaunay triangulation and that are in the 180 degrees field
of view of i. The interaction parameters were set to match those of the simulated
scene. In Fig. 4-center, we report the 2D histograms that show the frequency of
the displacement of two subjects, one of which sits in the center of the histogram
p = 0 with velocity positive only along the horizontal axis. Left-right symmetry
(with respect to the subject in the middle of the histogram) is enforced. These
histograms were used to fit the interaction parameters λI,1, λI,2, λG,1, λG,2, while
we manually set for all the sequences λS = 0.3 and λD = 0.03. To fit the
interaction parameters, we use a Gibbs measure interpretation of the energy
terms, and we minimize the sum of squared residual between the histogram and

(1/Z) exp (−ω(I(d) +G(d))) (6)

where I and G are from Eq. 1 and Eq. 2, respectively, and Z is a normalizing
constant to ensure that Eq. 6 sums to 1. ω is a parameter that is used only for the
conversion from energy to probability. Fig. 4-left shows the result of the fitted
energy for the Street sequence. The user study was made available to volunteers
on the web. The users were given a sample of the original recorded sequence
and then they were asked: “The videos below refer to the scenario shown in the
video of the previous page. How realistic does it look to you?”. The users had
to answer with a score from 1 (unrealistic) to 10 (realistic) for each video. 58
people gave an answer for the Meeting sequence, 51 for the Street one.
The results are shown in Fig. 4, left. In the Street sequence, there is no significant
difference between the results of the three mixtures (p > 0.05), while there is a
difference between the score of each of the mixtures and the random simulation
(p < 0.05). This suggests that the simulated and mixed simulations achieve a
realism similar to the one of the real sequence, with integration of real and virtual
agents providing opportunity for adding specific, real, possibly unusual, actions.
For the Meeting sequence the real sequence is scored significantly better (p <
0.05) than all the others. The random sequence has the lowest average score, but
the difference with the other simulated sequences is not significant. In this case,
the user does not find the simulated agents as realistic as the real ones, in terms
of motion and interactions. We believe that this happens for two reasons. The
first is that in the real sequence the transitions are time-dependent, meaning the
people in the beginning of the sequence move to the main table and later move to
the other part of the scene. Instead, within the event occurrence, our transitions
model a stationary process. The second reason is that the environment is dense
with static obstacles and standing people. This makes the navigation difficult.

3 We did not allow arbitrary transitions from any region to the exit regions.
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Fig. 4. Left: The results of the user
study. The central red bar is the median
score and the box extends from the 25-th
to the 75-th percentile. The dashed lines
go to the data points not considered as
outliers (red cross). The green cross is the
mean score. Center: The occupancy his-
togram for the Street sequence. Right:
The energy terms after fitting to the his-
togram.
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Fig. 5. Left: Collisions with path-following strat-
egy (red) and without (blue). Right: The real
agents’ deviation (median 0.33m) from the origi-
nal trajectory for one sample, with path-following
strategy.

6.2 Mixing Real and Simulated People

As discussed in Sec. 5, an interesting possibility is that of using real and simulated
agents in the same simulation. There we proposed 2 possible strategies to achieve
such goal. Fig. 5, left, shows the results of the comparison. In detail, we extract
100 sample simulations of the Students sequence, with a 50% mixture, once with
and once without the path-following strategy, and for each sample we collect
the number of collisions (distance < 0.4m) between real and virtual agents.
The effect of the path-following strategy in reducing the collisions is evident.
This, however, comes at the cost of slight deviations from the real agent original
trajectory. This is shown in Fig. 5 right. The path-following strategy should then
be preferred when the fidelity of the real agent trajectories is not crucial.

7 Conclusions

Our goal was to produce a model that could adapt to the semantics of a partic-
ular scene, and reproduce it with small effort. Once the virtual agents behave
similarly to real people, it is easier to integrate them in the same environment.
We validated this possibility by conducting a user study.
Even if the goal selection layer is reduced to a destination selection, a series
of interesting behaviors emerge. For example, people gather around tables thus
forming new groups, even with no notion of group merging in our model. The
action of getting in a tram when it comes, is also the pure result of a learned
”go-to” behavior. Although probably less visible, the customization of the steer-
ing model to the particular scene has been effective in reproducing its features.
Timings. For the Meeting sequence, it took ∼ 4 hours to extract tracks and
group memberships. All the other processing is carried out in the order of sec-
onds. With our unoptimized code, the simulation of the Students sequence, 215s
long with an average of 40 agents, requires 117s on a single core @2.67GHz.
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