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Abstract

In this work we propose an online multi person pose tracking approach which works
on two consecutive frames /;_; and /;. The general formulation of our temporal network
allows to rely on any multi person pose estimation approach as spatial network. From
the spatial network we extract image features and pose features for both frames. These
features serve as input for our temporal model that predicts Temporal Flow Fields (TFF).
These TFF are vector fields which indicate the direction in which each body joint is
going to move from frame /;_; to frame /. This novel representation allows to formulate
a similarity measure of detected joints. These similarities are used as binary potentials
in a bipartite graph optimization problem in order to perform tracking of multiple poses.
‘We show that these TFF can be learned by a relative small CNN network whilst achieving
state-of-the-art multi person pose tracking results.

1 Introduction

Understanding of human body pose is an important information for many scene understand-
ing problems such as activity recognition, surveillance and human-computer interaction. Es-
timating the pose in unconstrained environments with multiple interacting people is a chal-
lenging problem. Apart from the large amounts of appearance variation and complex human
body articulation, it also poses additional challenges such as large scale variation within a
single scene, varying number of persons and body part occlusion and truncation. Multi-
person pose estimation in videos increases the complexity even further since it also requires
to tackle the problems of person association over time, large person or camera motion, mo-
tion blur, etc.

In this work, we address the problem of multi-person pose tracking in videos, i.e, our goal
is to estimate the pose of all persons appearing in the video and assign a unique identity to
each person over time. The state-of-the-art approaches [12, 33] in this direction build on the
recent progress in multi-person pose estimation in images and first estimate the poses from
images using off-the-shelf methods followed by an additional step for person association
over time. There exist two main approaches for person association. The online approach
performs matching of the poses estimated at each time frame with the previously tracked

(© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Girdhar, Gkioxari, Torresani, Paluri, and Tran} 2018

Citation
Citation
{Xiu, Li, Wang, Fang, and Lu} 2018


2 DOERING, IQBAL, GALL: JOINTFLOW

poses and assigns an identity to each pose before moving to the next time step. In contrast,
offline or batch-processing based approaches [19] first estimate the poses in the entire video
and then perform pose tracking while enforcing global temporal coherency of the tracks. In
any case, both types of approaches require some metrics to measure the similarity between
a pair of poses. The choice of the metrics and features used for matching plays a crucial role
in the performance of these approaches. Recent methods for pose tracking [12] rely on non-
parametric metrics such as head normalized Percentage of Correct Keypoints (PCKh) [12]
and Object Keypoint Similarity (OKS) [32] between a pair of poses, Intersection over Union
(IoU) between the bounding boxes tightly enclosing each body pose [12], similarity between
the image features extracted from the person bounding boxes [12] or the optical flow in-
formation [17, 19, 33]. The location based metrics such as PCKh, OKS or IoU, on one
hand, assume that the poses change smoothly over time, and therefore, struggle in case of
large camera or body pose motion and scale variations due to camera zoom. On the other
hand, appearance based similarity metrics or optical flow information cannot handle large
appearance variations due to person occlusions or truncation, motion blur, etc. The offline
approaches try to tackle these challenges by enforcing long-range temporal coherence. This
is often done by formulating the problem using complex spatio-temporal graphs [17, 19]
which results in very high inference time, and therefore, makes these methods infeasible for
many applications.

In this work, we present an approach for online multi-person pose tracking. In contrast
to existing methods that rely on task-agnostic similarity metrics, we propose a task-specific
novel representation for person association over time. We refer to this representation as
Temporal Flow Fields (TFF). TFF represent the movement of each body part between two
consecutive frames using a set of 2D vectors encoded in an image. Our TFF representation
is inspired by the Part Affinity Fields representation [5] that measures the spatial association
between different body parts and is learned by a CNN. We integrate TFF in an online multi-
person tracking approach and demonstrate that a greedy matching approach is sufficient to
obtain state-of-the-art multi-person pose tracking results on the PoseTrack benchmark [2].

2 Related Work

The problem of multi person pose estimation in images has seen a drastic improvement over
the last few years. Early works towards the direction of multi person pose estimation [4, 6, 9,
20, 26] incorporate person detectors and estimate the corresponding poses based on learning
approaches (e.g. random forests [8]) combined with the pictorial structure model [11]. With
the introduction of deep learning based models, recent approaches achieve impressive multi
person pose estimation results in images. These works can be divided into top-down [7, 10,
14, 18, 25, 31] and bottom-up approaches [5, 16, 24, 27, 28, 29].

Former incorporate person detectors and estimate the pose for each person proposal.
For instance, Fang et al. [10] extend a stacked hourglass network [23] by two transformer
networks, a spatial transformer network (STN) and a spatial de-transformer network (SDTN)
respectively. Each person proposal is passed to the STN which automatically detects the
person of interest and applies an affine transformation which centers the person in an upright
position. After pose estimation the SDTN maps the pose back to the input image. In a
final step, the best pose for each person proposal is selected by non-maxima suppression
on poses. Chen et al. [7] categorize invisible or occluded keypoints as “hard” whereas the
remaining keypoints are classified as “simple”. The proposed cascaded model reflects their
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categorization of keypoints and is divided into two stages. The first stage is a feature pyramid
network which detects “simple” keypoints (e.g. head). The second stage, called RefineNet,
integrates all feature representations of different scales generated by the first stages. In that
way, the RefineNet is able to incorporate enough context to detect occluded or invisible body
parts.

Bottom-up approaches estimate the keypoints of all persons in a single run, but require a
post-processing procedure to assemble these keypoints into person estimates. Cao et al. [5]
estimate multiple poses in real-time. Their work extends the model proposed in [30] by in-
troducing an additional branch which predicts vector fields between body parts of individual
persons. These so called Part Affinity Fields (PAF) preserve location and orientation infor-
mation [5] of limbs. The authors propose to use a greedy bipartite graph matching algorithm,
which greedily connects joints that share the same body part. The work of Varadarajan et
al. [29] introduces a more efficient greedy part assignment algorithm compared to [5]. After
part belief maps and pairwise association maps are obtained like in [5], the number of part
candidates is reduced to an approximate number of persons within a clustering step. By fol-
lowing the kinematic chain, body parts are assigned in a greedy fashion to joints of the most
proximal candidate person cluster.

2.1 Multi-Person Pose Tracking

Even though a big advancement in multi person pose estimation in images has been achieved,
very few works have addressed this problem in videos [12, 17, 19, 32]. [19] is one of the first
works which tackels the problem of multi person pose estimation and tracking by solving a
spatio-temporal graph matching problem. The spatio-temporal graph is created by densely
connecting all detected joint candidates in the spatial domain. In the temporal domain all
joints of the same class are connected. In order to find the best graph partition, a conditioned
integer linear programming problem has to be optimized. For runtime reasons, [19] propose
to sequentially optimize for temporal windows of a fixed size only. Nevertheless, the runtime
is still too high which makes this work impractical for real-time applications. A very similar
approach with comparable performance is proposed by [17] which in contrast to [19] relies
on a sparse spatio-temporal graph. [12] propose a video pose estimation formulation which
consists of a 3D extension of the Mask R-CNN model [14]. By integrating temporal infor-
mation, the proposed model estimates person bounding boxes and poses which the authors
refer to as person tubes. To achieve this, their network first predicts bounding boxes for each
frame followed by a pre-trained Resnet-101 network [13] for pose estimation. In order to
link the estimated poses in time, [12] propose to solve a bipartite graph matching problem
in a greedy fashion and show that the achieved results are very close to the optimal solu-
tion obtained via Hungarian algorithm. By comparing different distance metrics, the authors
show that Intersection over Union (IoU) of person bounding boxes achieves the best trade-
off between performance and runtime. Nevertheless, this approach requires to process entire
sequences or portion of a sequence which limits the applicability for real-time applications.

In [32], the authors follow a very similar baseline as proposed in [12], but in contrast
the authors rely on two different sources for person bounding boxes: a bounding box detec-
tor and optical flow. This allows to warp estimated poses of the previous frames I, with
At ={1,...T} into the current frame and a similarity metric between estimated and warped
poses based on the Object Keypoint Similarity (OKS) is used for the calculation of binary
potentials of a temporal graph. By utilizing greedy graph matching similar to [12] this ap-
proach achieves state-of-the-art results.
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Spatial Multi Person Pose Estimation

Set of poses at \ Pose Features

' share emporal Model

Temporal Flow Fields

Figure 1: Proposed approach: For two consecutive input frames /;_; and /;, we utilize a Siamese
network initialized by an arbitrary multi person pose estimation network. During spatial inference,
pose features such as belief maps or part affinity fields are used to estimate the poses for each frame.
Building on these pose features, our porposed temporal model predicts the temporal flow field for each
detected joint which are used during inference to associate poses in time.

3 Overview

In this work, we propose to predict Temporal Flow Fields in an online fashion. To this
extend, we evaluate two frames at a time as visualized in Figure 1 and estimate their poses.
The structure of our temporal model allows to utilize any network architecture for the task
of multi person pose estimation. In the context of this work, we use the CNN of [5] as
a component in our Siamese network. While the Siamese network is used to predict the
poses in both frames, we take the last layer as input for the temporal CNN which predicts
the Temporal Flow Fields (TFF). To track the poses, we then create a bipartite graph G as
illustrated in Figure 4b) from the estimated poses and use the estimated TFF as similarity
measure (Sec. 4) in a bipartite graph matching problem.

4 Multi-Person Pose Tracking

We represent the body pose P of a person with J body joints as P = {p j} 1.7, where pj = (x},y;)
represent the 2D pixel coordinates of the j”* body joint. Given an input video, our goal
is to perform multi person pose estimation and tracking in an online manner. Formally,
at every time instance ¢ with video frame I; containing N; persons, we first estimate a set
of poses P, = {Pll7 . PtN '} and then perform person association with the set of persons
P = {PILI,...P:Z’II} tracked until the last video frame I;,_;. For pose estimation, we
use an improved version of [5] that we will explain briefly in Sec. 5. We formulate the prob-
lem of person association between the set of poses P; and P;_; as an energy maximization
problem over a bipartite graph G (Figure 4b) as follows

¢ o= agmax ) Y} W¥pp e (1)
= e

S.t. VP € P, Z ZP"rPt/—l <1 and VPt/—l € P, Z ZP’*Ptl—l <1,
PILIEP,,I ReP
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pt-l

. ‘

Figure 2: Calculation of Temporal Flow Fields: Let p "and p k be the location of joint j of person

k in frames I;_ and ;. For every point p € Q;; located on the ﬂow field, the TFF T}/, (p) contains a
unit vector v and 0 otherwise.

where zp p € {0,1} is a binary variable which indicates that the poses P, € P, and F_; €

P;—1 are associated with each other, and the binary potentials ¥p, p/ . define the similarity
B

between the pair of poses P, and P,

4.1 Temporal Flow Fields

We model the binary potentials ¥p P (1) by Temporal Flow Fields (TFF) and define each
TFF as a vector field that contains a unit vector v for each pixel p = (x,y). Each unit vec-
PP
s

tor v = points towards the direction of the target joint location p’j_k € P* where

Ajk = 1P — Pﬁl ||2 is the Euclidean distance between the estimated joint locations of per-
son k in frames /;_; and I;. We restrict the TFF to pixels that are close to the joint motion by
a parameter ¢ and describe the set of pixels of the TFF as

Qik={p10<v-(p—p") <AjaAlvi-(p—ph <o}, 2)
where v is a unit vector perpendicular to v as illustrated in Figure 2. This allows a pixel-wise

definition of TFF for joint class j of person k

. v if pE Qjﬁk
Tislp) = { 0 otherwise. @)

In a final step, a single representation of a flow field 7} is generated for each joint class by
aggregating the TFF among all estimated persons.

K
T/ (p) = Y T(p), @)

where 1, (p) is the number of non-zero unit vectors v at location p across all K persons.

4.1.1 Model

For the prediction of Temporal Flow Fields, we propose an efficient CNN as illustrated in
Figure 3b) which consists of five 7 x 7-convolution layers with a stride of one pixel followed
by two 1 x 1-convolutions. Non-linearity is achieved by ReLLU layers after each convolution.
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a) Spatial Features Stage 1 Stages > 1

Beliefmaps 1 Beliefmaps 1

VGG i

Part Affinity Fields 1 Part Affinity Fields 1

shared
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shared

Beliefmaps 2 Beliefmaps 2

Part Affinity Fields 2 Part Affinity Fields 2

Temporal Flow Fields

7)(7
EE e

Figure 3: Proposed Model Structure: a) Siamese network to extract pose features (SVGG, Belief, PAF)
for frames /,_; and I; and b) temporal network to extract temporal part affinity fields for feature map
input SVGG and Beliefmaps (SVGG + Belief) from the two frames.

As input, the network expects image features and pose features. These are obtained from
the Siamese network visualized in Figure 3a) which is initialized by a modified version of [5]
consisting of six stages. In particular, image features of both frames /,_; and I, are obtained
by a feature extraction layer as illustrated in Figure 3a). We refer to these image features
as SVGG. Additionally, the Siamese network predicts beliefmaps and Part Affinity Fields
(PAFs) (cf. [5]) at each stage which we refer to as pose features. Based on image features
and pose features, extracted from the last stage, the temporal model predicts TFF.

For the training of our model, we calculate the weighted squared L2 loss of the form

J
=YY Mp)-||T7 () - T;(p)[[5. )

Jj=1peQ

where T} (p) and T}(p) are the ground truth TFF and the predicted TFF at pixel location p
respectively. M is a binary mask with M(p) = O for all pixels located on an ignore region,
i.e., a region for which the dataset does not provide any annotations.

4.2 Inference

During inference, we partition the bipartite graph G by optimizing (1) using a greedy ap-
proach. In order to obtain the binary potentials Wp,_, p» we first generate J temporal bipartie

J
tected joints of class j in frame /,_; with all detected joints in frame /; of the same class.

Figure 4a) illustrates such subgraphs. Along each temporal edge of G;, we follow the esti-
mated TFF and obtain a flow field aggregate given by

subgraphs G; with a set of edges Z; = {z’.’”l’p’ ‘ PeP,P_|€ 73,_1} that connect all de-

. o=t 1 WP
Eagr (P Pli) = / Tj(t(o))T‘“’””do, ©)

0=0

3 t—1
P,-,n—Pj,mHZ

where i(0) = (1—0) - p’jjrl +o0-p'; , is a function that interpolates the location between both
detected joints p’j_”} and p‘m. The value is high if the TFF points in the same direction as
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a) joint level b) person level

Figure 4: Temporal edge candidate generation for incomplete pose estimates: a) on a joint level and b)

on a person level where W pi P! and W pi |p are the accumulated temporal edge potentials estimated
—141 —141

according to Equation (8).

Plin -p' i ! along i(0). In addition to this formulation, we have to consider a special case:
if there is no motion of a joint between frames, no flow field would exist and the flow field
aggregate would be zero. To overcome this issue, we incorporate the Euclidean distance
APy = 1P — p’fml ||2 between both joint locations into our similarity measure and define

R _ Eg:g'gr(pt',_m apt‘,n) if Apl',;n,n > TA
EJ(pj,mvpj,n) - { 1 / / if Aptj',m,’n < Ty, (7)
where 7 is a pre-defined distance threshold. This definition allows to formulate the bi-
nary potentials required to solve (1). However, instead of solving J different bipartite graph
matching problems for each joint class j, we convert each estimated pose into a node of
graph G as illustrated in Figure 4b). The temporal potential Wpn  pr is then defined as the
accumulated similarity between all joints j of persons P | and P

-1
Vi = X150 0) ), ®

where ]l(pt;”: ,Pj,) is a binary function with ]l(pljj”:, Pl ) = 1 if both joints are detected.
An example is shown in Figure 4a) and 4b): temporal edges between estimated joints of
person P 1 € P;—1 of frame t — 1 and persons Ptl,P € P, in frame ¢ are estimated. In this
particular case, persons P1 , and P1 share 12 temporal connections among joints whereas
persons Pl , and P? share 9 temporal edges. The costs of these edges are accumulated and
assigned as potential lPPL B! and \P};;li p2 1o the temporal connections among persons as

shown in Figure 4b).

By solving (1), we assign each detected person to either one of the poses from the pre-
vious frame, which continues the track, or a new track is initialized if no assignment is
possible.

5 Implementation Details

For the spatial part of our proposed approach (Figure 1), we re-implemented the method of
[5] and applied two minor modifications: instead of initializing the feature extraction part by
10 layers of VGG19, we increase the number of layers to 12. The second modification in-
cludes a different edge configuration for the prediction of Part Affinity Fields. Both changes
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MOTA MOTP Prec Rec MOTA MOTP Prec Rec mAP

Input Features tvus Total  Total  Total Total Input Features  Tyys Total  Total  Total Total Total

SVGG 01 560 842 824 749 SVGG +Belief 0.1 562 842 824 749 69.3

SVGG + Belief 0.1 562 842 824 749 SVGG +Belief 0.2 591 844 871 719 67.0

SVGG +Belief +PAF 0.1 562 842 824 749 SVGG +Belief 03 582 849 911 668 624
Table 1: Impact of different combinations of input Table 2: Impact of threshold Tyysg during NMS of
features on the pose tracking performance. beliefmaps on pose estimation and tracking perfor-

mance.

result in a gain in pose estimation performance. For further evaluations and a detailed de-
scription of the underlying edge configuration, we refer to the supplementary material. For
the detection of joints, we perform Non-Maximum Suppression (NMS) on the estimated
beliefmaps and discard all detections that do not meet a threshold Tyys = 0.2. The spa-
tial model was trained on the MSCOCO dataset [21] for 22 epochs with a learning rate of
1 =4-107 and a decay in learning rate of ¥ = 0.333 after 7 epochs. For finetuning, we rely
on the PoseTrack dataset [2] and train for 3000 iterations with a learning rate of n = 107>
and a decay in learning rate after 1000 iterations.

Our temporal model is trained on the PoseTrack dataset for 40 epochs with a learning
rate 1 = 4-107% and a learning rate decay of y = 0.333 after seven epochs. Additionally, we
fix 7o =2 and select 0 = 1 as the desired width of our Temporal Flow Fields.

During inference, we evaluate pairs of frames at four different scales (0.5, 1, 1.5 and 2)
and average the estimated results. Spatial greedy bipartite graph matching is performed sim-
ilar to [5] to estimate the poses first, followed by our proposed pose tracking approach. Since
we did not focus on optimizing the runtime as performed in [5], inference requires on aver-
age 5.6 seconds for a pair of images on an [7-5820K @ 3.3 GHz and a single 1080TI. Unlike
[5], we did not resize the videos of the PoseTrack dataset, which also contains HD quality
frames, to a smaller resolution which leaves a lot of space for improvements in runtime.

6 Experiments

Within the first experiment, we tested different combinations of pose features (Table 1) in
order to evaluate their performance. To this extend, each model was trained for 40 epochs
on the PoseTrack dataset [2] and we rely on the metrics proposed in [22] in order to measure
pose tracking performance. Certainly, spatial image features (SVGG) provide a strong cue
for the prediction of temporal vector fields of each joint class. Additional knowledge is
provided by the estimated belief maps (Belief) of both input frames. Part Affinity Fields
(PAFs) [5] represent the skeletonal structure of the human body, and were expected to boost
the performance even further. As Table 1 reveals, this is not the case. In order to reduce the
number of input parameters, we use SVGG + Belief as desired input for the temporal model.
In order to evaluate the impact of an increased receptive field, we explored the impact of
multiple stages similar to the spatial model. Our experiments have shown that further stages
do not have any impact on the final performance.

In an additional set of experiments, we evaluate different thresholds Tyss for non-maximum
suppression of the heatmaps used for the detection of joint candidates. Even though a higher
threshold results in less accurate pose estimates, more confident detection candidates result
in stronger person tracks. According to Table 2, we select Tyys = 2 as passable trade-off
resulting in a boost in tracking performance.
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MOTA MOTP Prec Rec

Baselines Total Total Total Total
PCKh 50.0 84.4 87.1 719
ToU 57.7 84.4 87.1 719
OKS 58.8 84.4 87.1 719
Optical Flow 58.5 84.4 87.1 719

Temporal Flow Fields 59.1 84.4 871 719
Table 3: Comparison to different baselines

6.1 Comparison to Baselines

In an additional set of experiments, the performance of TFF is compared to different track-
ing metrics, namely Intersection over Union (IoU) of persons, PCKh [3], Object Keypoint
Similarity (OKS) and optical flow based tracking. For this purpose, the temporal potential
defined in (8) has to be adapted to

IoU(BB pn BB pr)  for IoU
Wpm pp =19 PCKh(F",P" for PCKh 9)
OKS(P™" |, P for OKS,

where BBpn and BBpn are the bounding boxes for persons P | € P;—1 and P € P, in
frames I;_; and I; respectively. The bounding boxes for each person are estimated from the
detected poses. Table 3 summarizes the results. All three metrics can not compete with the
proposed TFF.

Optical flow based tracking requires a different set of changes. First of all, we rely on
the approach of [15] in order to estimate the optical flow f € R**/*2. Similar to Temporal
Flow Fields, the optical flow is a vector field which can be used to predict the movement of
each joint from frame /;_; to frame ;. In order to incorporate the optical flow into the greedy
bipartite graph matching algorithm, the flow field aggregation energy (6) has to be adapted
as follows:

[

1 1—1 r—1
|~ )

- 2
Eleow(p_’].7ml,p’].’n) —e Fiow , (10)

where oy, controls the tolerance radius to mistakes. In that way, optical flow vectors
f which vote for locations close to p’-,n still contribute significantly to the energy Ele o
Experiments have shown, that 6y, = 30 performs best. Although the network for optical
flow [15] is much larger and more expensive than our network for TFF, TFF outperform the

optical flow.

6.2 Comparison to State-of-the-Art

For a comparison to the state-of-the-art, we compare to the results on the PoseTrack valida-
tion set reported in [12, 32, 33] and to the results on the PoseTrack test set taken from the
PoseTrack challenge leaderboard [1]. On the validation set, we achieve a total MOTA of 59.1
which can be improved up to 59.8 after pruning tracks of a length smaller than 7 frames. We
submitted our results to the official validation server and achieved the second place on the
leaderboard with a final MOTA of 53.1.
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MOTA Prec Rec mAP

Approach Evaluation Set Total — Total Total Total
FlowTrack [32] val 65.4 855 80.3 76.7
TFF val 59.1 87.1 719 693
TFF + pruning val 59.8 87.8 71.1 66.7
PoseFlow [33]  val 58.3 87.0 703 66.5
ProTracker [12] val 55.2 88.1 66.5 60.6
FlowTrack [32] test 57.8 794 803 74.6
TFF + pruning test 53.1 82.6 69.7 633
HMPT* test 51.9 - - 63.7
ProTracker [12] test 51.8 - - 59.6
PoseFlow [33]  test 51.0 789 712 63.0
MVIG* test 50.8 - - 63.2
BUTD2* test 50.6 - - 59.2
Trackend* test 49.7 - - 57.5
PoseTrack [2]  test 48.4 - - 59.4
MIPAL* test 46.3 - - 69.9
SOPT-PT * test 42.0 - - 58.2
ML_Lab* test 41.8 - - 70.3
ICG* test 32.0 - - 51.2
IC_IBUG* test -190.1 - - 47.6

Table 4: Comparison to state-of-the-art. Approaches marked with * have not been published yet.

7 Conclusions

In this work, we proposed a convolutional neural network architecture for the task of online
multi person pose tracking. Our approach consists of two sub-networks: a spatial network for
multi person pose estimation and a temporal network which predicts Temporal Flow Fields.
TFF are used by a greedy temporal bipartite graph matching algorithm which associates
estimated poses in two consecutive frames /;,_; and ;. The results showed that a strong
structural knowledge in form of image features and belief maps of both frames are crucial for
a good performance of our temporal model. By relying on such feature input, our approach
achieves state-of-the-art pose tracking results, even with a small network architecture. For
this reason, in future work we will investigate stronger network architectures in order to
produce stronger Temporal Flow Fields which are able to cope with additional challenges
like occlusions and long-term dependencies.
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A Supplementary Material

A.1 Qualitative Results

Figure 5: Qualitative results for sequences of the PoseTrack validation set [2].

A.2 Baseline Improvement

| |
1

a) Standard b) Bypass c) ROM d) Extended e) NFC

Figure 6: Different edge configurations used for the training of different spatial models.

We evaluate the robustness of different edge configurations as shown in Figure 6. This
is motivated by the fact that edge configuration a) is prone to errors. If a single edge is not
estimated correctly, the entire pose breaks. Similar to [34] we introduce skip connections
to the standard model (Figure 6 b) Bypass model). Figure 6 c) illustrates a different idea to
connect joints which we refer to as Range of Motion (ROM) model since pairs of joints are
connected if both lie within the same ROM of a third joint. Further we train an edge con-
figuration as proposed in [17] which we refer to as Extended model. For completeness, we
introduce a nearly-fully-connected (NFC) model (Figure 6 e)) which connects most nearby
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Model VGG Layers Trained on Head Shou Elb Wri Hip Knee Ankl Total mAP
Standard 12 MSCOCO + PoseTrack 829 80.3 69.9 59.0 67.8 59.2 51.4 683
Bypass 12 MSCOCO + PoseTrack 83.0 792 67.6 59.0 662 612 53.6 682
ROM 12 MSCOCO + PoseTrack  82.0 762 703 579 69.3 61.7 541 683
Extended 12 MSCOCO + PoseTrack 80.0 80.8 71.3 57.8 725 63.3 53.9 69.3
NFC 12 MSCOCO + PoseTrack 78.3 758 683 569 692 62.1 535 67.1

Table 5: The evaluation of different edge configurations reveals that the Extended edge configuration

performs best compared to the Standard edge configuration.

joints. We rely on the metric proposed in [27] for the estimation of mean average precision
(mAP) of all our pose estimation models. Table 5 shows the results, using Tysy = 0.1. In all
other experiments, we use the Extended model.
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