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Abstract. In this work we propose an approach for estimating 3D hu-
man poses of multiple people from a set of calibrated cameras. Estimating
3D human poses from multiple views has several compelling properties:
human poses are estimated within a global coordinate space and multiple
cameras provide an extended field of view which helps in resolving ambi-
guities, occlusions and motion blur. Our approach builds upon a real-time
2D multi-person pose estimation system and greedily solves the associ-
ation problem between multiple views. We utilize bipartite matching to
track multiple people over multiple frames. This proofs to be especially
efficient as problems associated with greedy matching such as occlusion
can be easily resolved in 3D. Our approach achieves state-of-the-art re-
sults on popular benchmarks and may serve as a baseline for future work.

1 Introduction

3D human pose tracking has applications in surveillance [40] and analysis of sport
events [7, 23]. Most existing approaches [19, 21, 25–27, 33, 38, 28, 29] address 3D
human pose estimation from single images while multi-view 3D human pose es-
timation [7, 23, 3, 4, 12] remains less explored, as obtaining and maintaining a
configuration of calibrated cameras is difficult and costly. However, in sports or
surveillance, calibrated multi-camera setups are available and can be leveraged
for accurate human pose estimation and tracking. Utilizing multiple views has
several obvious advantages over monocular 3D human pose estimation: ambi-
guities introduced by foreshortening as well as body joint occlusions or motion
blurs can be resolved using other views. Furthermore, human poses are estimated
within a global coordinate system when using calibrated cameras.

In this work we propose an iterative greedy matching algorithm based on
epipolar geometry to approximately solve the k-partite matching problem of
multiple human detections in multiple cameras. To this end we utilize a real-
time 2D pose estimation framework and achieve very strong results on challeng-
ing multi-camera datasets. The common 3D space proves to be very robust for
greedy tracking, resulting in a very efficient and well-performing algorithm. In
contrast to previous works [7, 23, 34, 13], our approach does not discretize the
solution space but combines triangulation with an efficient pose association ap-
proach across camera views and time. Furthermore, our approach does not utilize
individual shape models for each person [26].
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Fig. 1. Qualitative results on the Shelf [3] dataset.

We make the following contributions: (i) we present a greedy approach for
3D multi-person tracking from multiple calibrated cameras and show that our
approach achieves state-of-the-art results. (ii) We provide extensive experiments
on both 3D human pose estimation and on 3D human pose tracking on various
multi-person multi-camera datasets.

2 Related Work

Significant progress has been made in pose estimation and pose tracking in
recent years [8, 11, 20, 39] and our model is built on advancements in the field
of 2D multi-person pose estimation [8, 9, 15, 17, 24, 31, 36, 39]. For instance, part
affinity fields [8] are 2D vector fields that represent associations between body
joints which form limbs. It utilizes a greedy bottom-up approach to detect 2D
human poses and is robust to early commitment. Furthermore, it decouples the
runtime complexity from the number of people in the image, yielding real-time
performance.

There is extensive research in monocular 3D human pose estimation [19, 21,
25, 27, 33, 38, 28, 29]. For instance, Martinez et al. [27] split the problem of infer-
ring 3D human poses from single images into estimating a 2D human pose and
then regressing the 3D pose on the low-dimensional 2D representation. Though
3D human pose estimation approaches from single images yield impressive re-
sults they do not generalize well to unconstrained data.

While multiple views are used in [34, 35] to guide the training for monocu-
lar 3D pose estimation, there are also approaches that use multiple views for
inference. A common technique to estimate a single 3D human pose from mul-
tiple views is to extend the well-known pictorial structure model [14] to 3D [2,
5, 7, 23, 34]. Burenius et al. [7] utilize a 2D part detector based on the HOG-
descriptor [10] while Kazemi et al. [23] use random forests. Pavlakos et al. [34]
outperform all previous models by utilizing the stacked hourglass network [32]
to extract human joint confidence maps from the camera views. However, these
models have to discretize their solution space resulting in either a very coarse
result or a very large state space making them impractical for estimating 3D
poses of multiple people. Furthermore, they restrict their solution space to a 3D
bounding volume around the subject which has to be known in advance. Esti-
mating multiple humans from multiple views was first explored by Belagiannis
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Fig. 2. Challenging 3D reconstruction of 6 persons in the CMU Panoptic Dataset [22]
with significant occlusion and partial visibility of persons.

et al. [3, 4]. Instead of sampling from all possible translations and rotations they
utilize a set of 3D body joint hypotheses which were obtained by triangulat-
ing 2D body part detections from different views. However, these methods rely
on localizing bounding boxes using a person tracker for each individual in each
frame to estimate the number of persons that has to be inferred from the com-
mon state space. This will work well in cases where individuals are completely
visible in most frames but will run into issues when the pose is not completely
visible in some cameras as shown in Figure 2. A CNN-based approach was pro-
posed by Elhayek et al. [12] where they fit articulated skeletons using 3D sums
of Gaussians [37] and where body part detections are estimated using CNNs.
However, the Gaussians and skeletons need to be initialized beforehand for each
actor in the scene, similar to [26]. Fully connected pairwise conditional ran-
dom fields [13] utilize approximate inference to extract multiple human poses
where DeeperCut [18] is used as 2D human pose estimation model. However, the
search space has to be discretized and a fully connected graph has to be solved,
which throttles inference speed. Our approach does not suffer from any of the
aforementioned drawbacks as our model works off-the-shelf without the need of
actor-specific body models or discretized state space and uses an efficient greedy
approach for estimating 3D human poses.

3 Model

Our model consists of two parts: First, 3D human poses are estimated for each
frame. Second, the estimated 3D human poses are greedily matched into tracks
which is described in Section 3.2. To remove outliers and to fill-in missing joints
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Fig. 3. Estimating multiple people from multiple views can be formulated as k-partite
graph partitioning where 2D human pose detections must be associated across multiple
views. We employ a greedy approach to make the partitioning tractable. Given a set
of 2D human pose detections on multiple views (a) we greedily match all detections
on two images (b) where the weight between two detections is defined by the average
epipolar distance of the two poses. Other views are then integrated iteratively where
the weight is the average of the epipolar distance of the 2D detections in the new
view and the already integrated 2D detections (c). 2D detections with the same color
represent the same person.

in some frames, a simple yet effective smoothing scheme is applied, which is also
discussed in Section 3.2.

3.1 3D Human Pose Estimation

First, 2D human poses are extracted for each camera separately. Several strong
2D multi-person pose estimation [8, 9, 15, 17, 24, 31, 36, 39] models have been pro-
posed but in our baseline we utilize OpenPose [8] as it is well established and
offers real-time capabilities. We denote the 2D human pose estimations as{

hi,k
}k∈[1,Ki]

i∈[1,N ]
(1)

where N is the number of calibrated cameras and Ki the number of detected
human poses for camera i.

In order to estimate the 3D human poses from multiple cameras, we first
associate the detections across all views as illustrated in Figure 3. We denote
the associated 2D human poses asH where |H| is the number of detected persons
and Hm = {hi,k} is the set of 2D human poses that are associated to person m.
Once the poses are associated, we estimate the 3D human poses for all detected
persons m with |H| > 1 by triangulating the 2D joint positions.

For the association, we select camera i = 1 as starting point and choose
all 2D human pose detections h1,k in this camera view as person candidates,
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Fig. 4. Epipolar lines for two camera views of the UMPM Benchmark [1]. The blue
and the red dot in image (a) are projected as blue (red) epipolar lines in the second
image (b) while the orange and light-blue dot from image (b) are projected onto image
(a).

i.e., H =
{
{h1,k}

}
. We then iterate over the other cameras and greedily match

their 2D detections with the current list of person candidates H using bi-partite
matching [30].

The cost for assigning a pose hi,k to an existing person candidate Hm is given
by

Φ(hi,k,Hm) =
1

|Hm||Jkl|
∑

hj,l∈Hm

∑
ι∈Jkl

φ(hi,k(ι), hj,l(ι)) (2)

where hi,k(ι) denotes the 2D pixel location of joint ι of the 2D human pose hi,k
and Jkl is the set of joints that are visible for both poses hi,k and hj,l. Note that
the 2D human pose detections might not contain all J joints due to occlusions or
truncations. The distance between two joints in the respective cameras is defined
by the distance between the epipolar lines and the joint locations:

φ(pi, pj) = |pTj F i,jpi|+ |pTi F j,ipj | (3)

where F i,j is the fundamental matrix from camera i to camera j. Figure 4 shows
the epipolar lines for two joints.

Using the cost function Φ(hi,k,Hm), we solve the bi-partite matching problem
for each image i:

X∗ = argmin
X

|H|∑
m=1

Ki∑
k=1

Φ(hi,k,Hm)Xk,m (4)

where ∑
k

Xk,m = 1 ∀m and
∑
m

Xk,m = 1 ∀k.

X∗k,m = 1 if hi,k is associated to an existing person candidate Hm and it is zero
otherwise. If X∗k,m = 1 and Φ(hi,k,Hm) < θ, the 2D detection hi,k is added to
Hm. If Φ(hi,k,Hm) ≥ θ, {hi,k} is added as hypothesis for a new person to H.
Algorithm 1 summarizes the greedy approach for associating the human poses
across views.
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Result: Associated 2D poses H
H :=

{
{h1,k}

}
;

for camera i← 2 to N do
for pose k ← 1 to Ki do

for hypothesis m← 1 to |H| do
Ck,m = Φ(hi,k,Hm) ;

end

end

X∗ = argmin
X

∑|H|
m=1

∑Ki
k=1 Ck,mXk,m ;

for k,m where X∗k,m = 1 do
if Ck,m < θ then
Hm = Hm

⋃
{hi,k} ;

else
H = H

⋃ {
{hi,k}

}
;

end

end

end
H = H \Hm ∀m where |Hm| = 1;

Algorithm 1: Solving the assignment problem for multiple 2D human pose
detections in multiple cameras. Φ(hi,k,Hm) (2) is the assignment cost for as-
signing the 2D human pose hi,k to the person candidate Hm. X∗ is a binary
matrix obtained by solving the bi-partite matching problem. The last line in
the algorithm ensures that all hypotheses that cannot be triangulated are re-
moved.

3.2 Tracking

For tracking, we use bipartite matching [30] similar to Section 3.1. Assuming
that we have already tracked the 3D human poses until frame t − 1, we first
estimate the 3D human poses for frame t as described in Section 3.1. The 3D
human poses of frame t are then associated to the 3D human poses of frame
t − 1 by bipartite matching. The assignment cost for two 3D human poses is
in this case given by the average Euclidean distance between all joints that are
present in both poses. In some cases, two poses do not have any overlapping
valid joints due to noisy detections or truncations. The assignment cost is then
calculated by projecting the mean of all valid joints of each pose onto the xy-
plane, assuming that the z-axis is the normal of the ground plane, and taking
the Euclidean distance between the projected points. As long as the distance
between two matched poses is below a threshold τ , they will be integrated into
a common track. Otherwise, a new track is created. In our experiments we set
τ = 200mm.

Due to noisy detections, occlusions or motion blur, some joints or even full
poses might be missing in some frames or noisy. We fill in missing joints by tem-
poral averaging and we smooth each joint trajectory by a Gaussian kernel with
standard deviation σ. This simple approach significantly boosts the performance
of our model as we will show in Section 4.
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[7]* [23]* [34]* [3] [4] [13] Ours Ours+

ua .60 .89 1.0 .68 .98 .97 .99 1.0
la .35 .68 1.0 .56 .72 .95 .99 1.0
ul 1.0 1.0 1.0 .78 .99 1.0 .98 .99
ll .90 .99 1.0 .70 .92 .98 .93 .997

avg .71 .89 1.0 .68 .90 .98 .97 .997

Table 1. Quantitative comparison of methods for single human 3D pose estimation
from multiple views on the KTH Football II [23] dataset. The numbers are the PCP
score in 3D with α = 0.5. Methods annotated with * can only estimate single human
poses, discretize the state space and rely on being provided with a tight 3D bounding
box centered at the true 3D location of the person. Ours+ and Ours describe our
method with and without track smoothing (Section 3.2). ul and la show the scores for
upper and lower arm, respectively, while ul and ll represent upper and lower legs.

4 Experiments

We evaluate our approach on two human pose estimation tasks, single person 3D
pose estimation and multi-person 3D pose estimation, and compare it to state-
of-the-art methods. Percentage of correct parts (PCP) in 3D as described in [7]
is used for evaluation. We evaluate on the limbs only as annotated head poses
vary significantly throughout various datasets. In all experiments, the order in
which the cameras are processed is given by the dataset. We then evaluate the
tracking performance. The source code is made publicly available 1.

4.1 Single Person 3D Pose Estimation

Naturally, first works on 3D human pose estimation from multiple views cover
only single humans. Typical methods [7, 23, 34] find a solution over the complete
discretized state space which is intractable for multiple persons. However, we
report their results for completeness. All models were evaluated on the complete
first sequence of the second player of the KTH Football II [23] dataset. Our
results are reported in Table 1. Our model outperforms all other multi-person
approaches and gets close to the state-of-the-art for single human pose estima-
tion [34] which makes strong assumptions and is much more constrained. Our
model has the lowest accuracy for lower legs (ll) which experience strong defor-
mation and high movement speed. This can be mostly attributed to the 2D pose
estimation framework which confuses left and right under motion blur, as can
be seen in Figure 7. When smoothing the trajectory (Section 3.2) this kind of
errors can be reduced.

1 https://github.com/jutanke/mv3dpose
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Campus dataset (α = 0.5)
[3] [4] [13] Ours Ours+

Actor 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
ua .83 .90 .78 .97 .97 .90 .97 .94 93 .86 .97 .91 .99 .98 .98
la .78 .40 .62 .86 .43 .75 .87 .79 70 .74 .64 .68 .91 .70 .92
ul .86 .74 .83 .93 .75 .92 .94 .99 88 1.0 .99 .99 1.0 .98 1.0
ll .91 .89 .70 .97 .89 .76 .97 .95 81 1.0 .98 .99 1.0 .98 .99

avg .85 .73 .73 .93 .76 .83 .94 .93 .85 .90 .90 .89 .98 .91 .98

avg* .77 .84 .91 .90 .96

Shelf dataset (α = 0.5)
[3] [4] [13] Ours Ours+

Actor 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
ua .72 .80 .91 .82 .83 .93 .93 .78 .94 .99 .93 .97 .1.0 .97 .97
la .61 .44 .89 .82 .83 .93 .83 .33 .90 .97 .57 .95 .99 .64 .96
ul .37 .46 .46 .43 .50 .57 .96 .95 .97 .998 1.0 1.0 1.0 1.0 1.0
ll .71 .72 .95 .86 .79 .97 .97 .93 .96 .998 .99 1.0 1.0 1.0 1.0

avg .60 .61 .80 .73 .74 .85 .92 .75 .94 .99 .87 .98 .998 .90 .98

avg* .67 .77 .87 .95 .96

Table 2. Quantitative comparison of multi-person 3D pose estimation from multiple
views on the evaluation frames of the annotated Campus [16, 3] and Shelf dataset [3].
The numbers are the PCP score in 3D with α = 0.5. Ours+ and Ours describe our
method with and without track smoothing (Section 3.2). We show results for each of
the three actors separately as well as averaged for each method (average*).

4.2 Multi-Person 3D Pose Estimation

To evaluate our model on multi-person 3D pose estimation, we utilize the Cam-
pus [16, 3], Shelf [3], CMU Panoptic [22] and UMPM [1] dataset. The difficulty
of the Campus dataset lies in its low resolution (360 × 288 pixel) which makes
accurate joint detection hard. Furthermore, small errors in triangulation or de-
tection will result in large PCP errors as the final score is calculated on the 3D
joint locations. As in previous works [3, 4] we utilize frames 350−470 and frames
650 − 750 of the Campus dataset and frames 300 − 600 for the Shelf dataset.
Clutter and humans occluding each others make the Shelf dataset challenging.
Nevertheless, our model achieves state-of-the-art results on both datasets by a
large margin which can be seen in Table 2. Table 3 reports quantitative results
on video p2 chair 2 of the UMPM [1] benchmark. A sample frame from this
benchmark can be seen in Figure 4. As the background is homogeneous and the
human actors maintain a considerable distance to each other the results of our
method are quite strong.
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Ours+

Actor 1 2
ua .997 .98
la .98 .996
ul 1.0 1.0
ll .99 .997

avg 0.99 0.99

Table 3. Quantitative comparison of multi-person 3D pose estimation from multiple
views on p2 chair 2 of the UMPM benchmark [1].

Ours Ours+

160422 ultimatum1 [22] .89 .89
160224 haggling1 [22] .92 .92

160906 pizza1 [22] .92 .93

Table 4. Quantitative evaluation of multi-person 3D pose tracking on the CMU Panop-
tic dataset [22] using the MOTA [6] score. Ours+ and Ours describe our method with
and without track smoothing (Section 3.2).

4.3 Tracking

For evaluating the tracking accuracy, we utilize the MOTA [6] score which pro-
vides a scalar value for the rate of false positives, false negatives, and identity
switches of a track. Our model is evaluated on the CMU Panoptic dataset [22]
which provides multiple interacting people in close proximity. We use videos
160224 haggling1 with three persons, 160422 ultimatum1 with up to seven per-
son, and 160906 pizza1 with six persons. For the videos 160422 ultimatum1 we
use frames 300 to 3758, for 160906 pizza1 we use frames 1000 to 4458 and for
160224 haggling1 we use frames 4209 to 5315 and 6440 to 8200. The first five
HD cameras are used. Our results are reported in Table 4 which shows that our
approach yields strong tracking capabilities.

4.4 Effects of Smoothing

As can be seen in Table 1 and Table 2 the effects of smoothing can be signif-
icant, especially when detection and calibration are noisy as is the case with
the Campus and the KTH Football II dataset. In both datasets 2D human pose
detection is challenging due to low resolution (Campus) or strong motion blur
(KTH Football II). Datasets with higher resolution and less motion blur like the
Shelf dataset do not suffer from this problems as much and as such do not benefit
the same way from track smoothing. However, a small gain can still be noted as
smoothing also fills in joint detections that could not be triangulated. Figure 5
explores different σ values for smoothing on the KTH Football II, Campus, and
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1 2 3 4 5 6

σ

0.90

0.92

0.94

0.96
P
C
P

KTH Football II

Campus

Shelf

Fig. 5. PCP score for different smoothing values σ for tracking on KTH Football II,
Campus, and Shelf. If σ is too small, the smoothing has little effect and coincides with
the un-smoothed results. When the joint trajectories are smoothed too much, the PCP
score drops as well as the trajectories do not follow the original path anymore. (Larger
PCP scores are better)

Shelf dataset. It can be seen that smoothing improves the performance regard-
less of the dataset but that too much smoothing obviously reduces the accuracy.
We chose σ = 2 for all our experiments except for the Campus dataset where we
set σ = 4.2. The reason for the higher value of σ for the Campus dataset is due
to the very low resolution of the images compared to the other datasets, which
increases the noise of the estimated 3D joint position by triangulation.

4.5 Effects of camera order

So far we used the given camera order for each dataset, but the order in which
views are greedily matched matters and different results might happen with
different orderings. To investigate the impact of the camera order, we evaluated
our approach using all 120 permutations of the 5 cameras of the Shelf dataset.
The results shown in Figure 6 show that the approach is very robust to the order
of the camera views.

4.6 Early Commitment

A failure case happens due to the early commitment of our algorithm with re-
gards to the 2D pose estimation, as can be seen in Figure 7. When the pose
estimation is unsure about a pose, it still fully commits to its output and disre-
gards uncertainty. This problem occurs due to motion blur as the network has
difficulties to decide between left and right in this case. As our pose estimation
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avg lower arm upper arm lower leg upper leg
0.85

0.90

0.95

1.00
PC

P

Fig. 6. PCP score averaged over all subjects for all 120 camera permutations of the
Shelf dataset. The vertical line represents the mean value over all permutations while
the dots represent each camera permutation.

Fig. 7. Issues with early commitment. As we utilize the 2D pose estimations directly,
our method suffers when the predictions yield poor results. In this example the pose
estimation model correctly estimates (a) and (c) but confuses left and right on (b) due
to motion blur. The resulting 3D pose estimation (d) collapses into the centre of the
person. The red limbs represent the right body side while blue limbs represent the left
body side.

model has mostly seen forward-facing persons it will be more inclined towards
predicting a forward-facing person in case of uncertainty. When left and right of
a 2D prediction are incorrectly flipped in at least one of the views, the merged
3D prediction will collapse to the vertical line of the person resulting in a poor
3D pose estimation.

5 Conclusion

In this work we presented a simple baseline approach for 3D human pose estima-
tion and tracking from multiple calibrated cameras and evaluate it extensively
on several 3D multi-camera datasets. Our approach achieves state-of-the-art re-
sults in multi-person 3D pose estimation while remaining sufficiently efficient for
fast processing. Due to the models simplicity some common failure cases can be
noted which can be build upon in future work. For example, confidence maps
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provided by the 2D pose estimation model could be utilized to prevent left-right
flips. Our approach may serve as a baseline for future work.
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