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Abstract

Weakly supervised learning for object detection has been gaining significant attention in the recent past. Visually
similar objects are extracted automatically from weakly labelled videos hence bypassing the tedious process of manually
annotating training data. However, the problem as applied to small or medium sized objects is still largely unexplored.
Our observation is that weakly labelled information can be derived from videos involving human-object interactions.
Since the object is characterized neither by its appearance nor its motion in such videos, we propose a robust framework
that taps valuable human context and models similarity of objects based on appearance and functionality. Furthermore,
the framework is designed such that it maximizes the utility of the data by detecting possibly multiple instances of an
object from each video. We show that object models trained in this fashion perform between 86% and 92% of their fully
supervised counterparts on three challenging RGB and RGB-D datasets.
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1. Introduction

Data driven approaches have been shown to perform
well [1, 2, 3] for the tasks of object detection, face recogni-
tion and image classification. Trained in a completely su-
pervised approach, their high performance stems majorly5

from two sources. Firstly, an increased model complexity
allows for designing classifiers with increased capability of
handling data-in-the-wild [4], and secondly, vast amount
of rich training data is made available to retain the gener-
alization capabilities of the designed classifier. Having ac-10

cess to labelled data has therefore become a pre-requisite
for designing robust solutions. However, this dependence
can be a bottleneck in many scenarios either because of ef-
forts involved or inherent ambiguity during annotation. In
the future, present day crowdsourcing solutions will be im-15

practical due to high associated costs and ever increasing
amount of data. Moreover, this also ignores vast amount of
freely available weakly structured data. As a result, recent
works in object detection have turned towards utilizing
weakly labelled data [5, 6, 7, 8, 9, 10, 11, 12], particularly20

videos [13, 14, 15]. Critically, these methods assume that
motion or appearance of objects are sufficient descriptors
for segmenting them with relative ease, which is indeed the
case for large active objects such as flying airplanes and
walking tigers. The assumption is further strengthened by25

the abundance of labelled videos on the Internet which are
characteristically object- or action-centric.
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Most present day models for object detection work well
for objects that cover a significant part of the image. The
concept of representing objects by parts [16] and scoring30

their relative locations in a star model [17] brought signifi-
cant improvements in modelling larger objects such as air-
planes, boats, cars, horses etc. However, modelling daily
objects such as markers, remotes or plates is still largely
unresolved [18]. Exploiting weakly labelled data for such35

objects is further complicated by the scarcity of clean data
because such objects do not form popular subjects for gen-
erating and sharing videoclips.

On the other hand, labelled videos involving human
activity, like pouring milk or eating cereal are abundantly40

available. Such data, however, violates the principle as-
sumption since the prevelant themes of the video are now
human body parts and background clutter instead of ob-
jects of interest; thus resulting in the failure of contempo-
rary methods as demonstrated in our experiments. The45

problem is further complicated by varing appearance and
pose of objects undergoing interactions coupled with low
resolutions and frequent occlusions. As a result, appearance-
only approaches are limited in capacity to detect such ob-
jects, as shown in our experiments.50

A preliminary version of this work appeared in [19] in
which we address the problem of weakly supervised learn-
ing for medium or small sized objects from action videos
where humans interact with them. We propose a method
composed of two stages as shown in Figure 1. The first55

stage tackles the issue of objects of interest not correspond-
ing to dominant motion segments. Instead, we generate
seeds by sampling superpixels that are likely to overlap
with objects from a generative model encoding human-

Preprint submitted to Computer Vision and Image Understanding May 30, 2016

*2. Manuscript



object interaction. Object candidates are then generated60

by tracking the seeds to form spatio-temporal tubes as
illustrated in Figure 2. To tackle the rich variety of ob-
ject appearance and motion, tracking is made robust by
sampling from a pool of algorithms and parameters. The
second stage tackles the issue of appearance features alone65

being insufficient to describe objects. To this end, we pro-
pose an object similarity measure that depends not only
on appearance and size but also on functionality derived
from relative motion with respect to the human.

In the present work, we generalize the assumption of70

extracting a single tube from each video as in [19]. The
generalization facilitates extracting (possibly) numerous
tubes overlapping with the object as a final solution, re-
sulting in increased economy of tapping information from
the data. Also, due to inherent clutter and noise, having75

flexibility to choose no tube from a video can potentially
improve homogeneity within inferred tubes. In this re-
gard, we incorporate the above improvements as a greedy
iterative approach into the inference procedure.

We demonstrate the robustness of our approach on80

three demanding datasets, namely one RGB dataset [20]
and two RGB-D datasets [21, 22]. Each dataset is recorded
with a different type of sensor viz. time of flight [21], color
camera [20] and structured light sensor [22]. Automat-
ically extracted human pose in each dataset also varies85

in the number of detected body parts and in the quality
of joint localization. We demonstrate that the proposed
method is successful in detecting objects from videos of
activities on all three datasets. Further, we provide a de-
tailed evaluation of the generalized inference with regard90

to the quality of inferred tubes and the impact of various
potentials.

2. Related Work

Object detection encapsulates determining whether an
image contains instances of a certain object category and95

their locations. Optionally, additional information e.g. about
part-locations [16], object pose [23, 24] and occlusion [25,
26, 27, 28] has been inferred. The fundamental challenge is
to effectively model inter and intra class appearance and
shape variation of objects. To this day, this is usually100

achieved by designing a parametric model.
These models can be broadly classified into three cat-

egories. The first category of algorithms extract local
(SIFT, HOG) or global (GIST, Fischer) image features
and represent objects as bag of words (BoW) through sta-105

tistical classifiers [29, 30, 31]. Although shown to work well
for classification, the approach is suboptimal for locating
objects. The approach [32] alleviates the problem by effi-
ciently building dictionaries of visual words in a framework
that is jointly optimized for classifying and regressing ob-110

ject centers. The second category of algorithms detect the
presence of objects by fitting rich object models such as
deformable part models (DPMs). This process can reveal
useful hidden information such as object part locations [16]

and occlusion [25, 26, 27], but DPMs are usually trained115

from images with known locations of objects or even their
parts [33]. The third category of algorithms are convolu-
tional neural networks (CNNs) which learn feature repre-
sentations of objects [34, 35, 36].

To this day, the parameters of the model are learned120

through a set of traning instances using statistical ma-
chine learning techniques. The various learning methods
can therefore be characterized by the extent of supervi-
sion involved during learning. At one end of the spectrum,
fully supervised methods require careful annotation of ob-125

ject locations in the form of bounding boxes [16, 34, 32],
segmentations [37] or even object part locations [33, 38],
which is costly and can frequently introduce inconsistency
and ambiguity. On the other hand, unsupervised learn-
ing methods that do not require any supervision aim at130

finding similar objects in a set of unlabelled images [7, 39]
or videos [40]. They are, however, often limited to fre-
quently occuring and visually consistent objects and are
easily susceptible to background clutter. The stringent re-
quirements regarding cleanliness of input data has been135

relaxed by using exemplar samples [41] or by employing
pretrained object detectors [42, 43, 44]. On similar lines,
cosegmentation [5, 6, 8, 9] approaches identify object in-
stances up to a bounding box or segmentation on a col-
lection of images with an object class label. Further, [45]140

segments objects in videos by clustering long term point
trajectories. However, it assumes similarity between tra-
jectories from object regions and does not investigate re-
lationships between videos.

Weakly supervised learning lies at the middle of the145

spectrum by providing annotations at a higher level of ab-
straction thereby reducing the annotation effort. This is
an important scenario for many practical applications be-
cause weak labels are more readily available e.g. in form
of text tags [46], movie transcripts [47, 48], geographical150

meta-data [49] and captions [50]. Weakly labelled videos
are exploited in [15, 51, 13, 14, 19].

In the context of object detection, the common prac-
tice has been to model object location with latent vari-
ables while jointly learning an appearance model. Most155

approaches impose certain assumptions for successful ap-
plication e.g. [12, 11, 10, 52, 14] assume a single predomi-
nant object in the input data and [14, 15] assume rigid or
articulated objects with motion distinctive from its back-
ground. These assumptions guide the latent variables such160

that the solution extracts object instances despite object
deformations and background. In practice, however, the
quality of a solution depends on the similarity measure
used. For instance, [52, 10, 12] obtain a solution set that
is most consistent in terms of shape and color, [14, 15] ex-165

ploit motion and appearance consistency within the input
data and [11] exploits symmetry constraints of objects in a
multiclass framework. The solution is mostly obtained by
multiple instance learning [10] or by minimizing an energy
on a fully connected graph [14, 19]. Most methods fail to170

exploit training data completely as they only select one
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instance per image or video. This is a suboptimal choice
because all other instances of that object in the image are
ignored therefore failing to tap its true potential. This
limitation is dealt in [11] by introducing a latent SVM175

formulation that exploits presence of multiple object in-
stances in an image. On similar lines, the present method
is a generalization of [19] where the assumption of selecting
strictly one instance per video is relaxed in the framework
of exploiting human context for building models of small180

and medium sized objects.
The theme of scene understanding driven by human

context has gained recent attention owing to advances in
techniques and commercial SDKs for human pose estima-
tion [21, 22, 53, 54, 55, 56, 57, 58, 59, 60, 61]. In [59, 61],185

image regions are segmented based on observed human tra-
jectories in office and street environments. While several
works [62, 63, 64] investigate combining object detection
and action recognition, the works [21, 22, 58, 60] employ
affordance cues as higher level representation for video un-190

derstanding. In [58], both object detection and activity
recognition are improved by jointly representing objects
and their functionality. Unsupervised clustering of objects
based on their motion relative to humans is performed
in [21]. Further, human activity is recognized based on195

object functionality in the context of hand-object interac-
tions in [60] or based on high level attribute co-occurance
statistics in [65, 66]. In [22], activities and object affor-
dances are learned simultaneously, while [67] deals with
appearance based object detection based on weak action-200

object labels in egocentric videos.
Human models have also been used to hallucinate their

interactions with given scenes. In [55], scene locations that
can afford the action sittable are learned through geometric
relations between the scene and a human pose representing205

the action. A similar approach is incorporated for 3D scene
labelling in [57, 53] and extracting scene geometry in [54]
by modelling relations between objects and human pose.
An opposite approach is followed by [56] where human
poses are inferred based on scene geometry.210

3. Learning object models from activities

Figure 1 illustrates the pipeline for detecting instances
of an object class in a set of RGB-D or RGB videos. Input
to the pipeline is a collection of videos that is labelled with
the involved activity of human-object interaction. E.g.,215

the label drinking coffee indicates the presence of a mug.
We also assume that the 2d or 3d human pose has al-
ready been extracted. This is readily feasible because of
freely available SDKs for RGB-D data and due to signif-
icant progress in 2d pose estimation in the recent past.220

No further restrictions are imposed on the nature of input
videos in that they may contain a multitude of activities,
persons and/or objects. For instance, the labels eating ce-
real and stacking bowls are different activities that, among
many other objects, commonly involve a bowl.225

Figure 1: Processing pipeline: Input is a set of action
videos with human pose. Multiple sequences of object
proposals (tubes) are generated from each video. By defin-
ing a model that encodes the similarity between tubes in
terms of appearance and object functionality, instances of
the common object class are detected.

The first step involves generating several object propos-
als per video. An object proposal is modelled as a spatio-
temporal region in the video, also called a tube. Multiple
tubes are sampled from a video using a simple graphical
model representing human-object interactions. This pro-230

cedure is explained in Section 3.1. While the purpose is
to extract tubes that significantly overlap with the objects
of interest, this is hardly true in practice as they overlap
mostly with background clutter or body parts; thereby
lacking object information. To this end, given a collec-235

tion of tubes from all videos, we select a subset of tubes
best describing the object from each video. This is real-
ized by minimizing an energy functional that comprises
unary and pairwise potentials. Unary potentials evaluate
the presence or absence of an object in a tube and pairwise240

potentials evaluate the similarity of objects between two
tubes. All potentials incorporate appearance and func-
tionality as described in Section 3.3.

3.1. Generating tubes

Extracting dominant motion segments as in [68, 14] is
a naive way of generating tubes. Such methods cannot
generate meaningful tubes in the present context as dom-
inant motion segments mostly correspond to body parts.
Instead, we generate a tube Tv from video v by tracking
a frame based superpixel S over time. Owing to the rich
variety of objects and actions, we found no unique univer-
sal setting for either superpixel selection or tracking that
yielded tubes of good quality. We therefore model this
uncertainty by randomly selecting a tracking algorithm τ
from a pool of tracking algorithms. In other words, we
obtain a set of tubes by sampling from the probabilistic
graphical model defined over the tubes, given by

p(Tv, τ, S) = p(Tv|τ, S)p(τ)p(S). (1)

In practice, we use a pool of two tracking algorithms that245

are selected with uniform probability i.e. p(τ) = 0.5. The
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first method is based on propagating a superpixel based on
median optical flow [69] into the next or previous frame.
The second method is based on mean shift [70]. While
the first method successfully tracks medium sized rigid ob-250

jects, it is easily misled by fast motion, background clutter
or small objects. The second method is more robust to fast
motion but gets misled by occlusions during human-object
interactions. Since either case is not robust for long term
tracking, we limit the length of each tube to a maximum255

of 300 frames.
For generating superpixels S, we modify [71] to incor-

porate depth as an additional feature. Since the relevance
of depth information depends on material properties, ob-
ject size and object characteristics, we found it useful to
use a pool of data channels. In practice, the pool is de-
fined as σ ∈ {RGB,D,RGB −D}. Each configuration in
the pool represents the data using which superpixels are
generated. The probability of selecting a superpixel also
depends on frame f and a spatial prior that depends on
the frame p(l|f). We obtain a superpixel by sampling from

p(S, f, l, σ) = p(S|f, σ)p(l|f)p(f)p(σ). (2)

We set a uniform prior over σ. p(f) is a temporal prior that
represents the probability of close human-object interac-
tion in frame f . While a high level representation of hu-
mans and objects can be utilized to model this probability,260

we use a uniform distribution. In other words, we assume
that human-object interaction occurs in all frames. As for
the spatial prior p(l|f), we incorporate human pose infor-
mation. To this end, we select the joint with the highest
variance in location, computed within a temporal neigh-265

borhood of 15 frames. We then model p(l|f) as an isotropic
uniform distribution at joint location j at frame f with ra-
dius 400mm in case of RGB-D videos. Since human pose
from RGB does not provide 3d information, we use the lo-
cation of the parent joint jp to compute the radius of the270

circle ‖γ(j − jp)‖ and its center j + γ(j − jp). In practice,
we use γ = 0.2.

Sampling a tube from Equation (1) corresponds to sam-
pling a superpixel and a tracking method. To sample a su-
perpixel S from Equation (2), we sample a configuration275

σ to generate a superpixel segmentation of a randomly se-
lected frame f among which one superpixel S is chosen
based on the spatial prior p(l|f). This is then tracked over
time using a randomly sampled tracking algorithm τ as
per Equation (1) to generate a tube Tv. The procedure is280

illustrated in Figure 2. As for the number of tubes gen-
erated per video, we set it to 30 for all our experiments.

3.2. Generating object hypotheses

Given a set of candidate tubes Tv in each video v, the
goal of [72, 14, 19] is to select one tube per video that
contains the object class and is tight around the object.
This has been formulated in [19] as an energy minimization
problem defined jointly over all N videos. Let lv ∈ Lv =

Figure 2: Illustrating the tube generation process. Im-
ages of the top half: The first image shows joint trajecto-
ries. The most active joint is used to compute the spatial
prior for selecting superpixels. The three images next to
it show three superpixel representations computed using
depth (D), color (RGB) and both (RGB-D). Colored su-
perpixels are within the specified distance of the most ac-
tive joint. Each of the last two rows visualizes a tube Tv
sampled from the blue and green superpixel S respectively.

{1, . . . , |Tv|} be a label that selects one tube out of a video.
The energy of all selected tubes (l1, . . . , lN ) is defined as

E(l1, . . . , lN ) =

N∑
v=1

(
Φ(lv) +

N∑
w=v+1

Ψ(lv, lw)

)
(3)

where the unary potentials Φ measure the likelihood of a285

single tube being a tight fit around an object. The binary
potentials Ψ measure the homogeneity in object appear-
ance and functionality of a pair of tubes.

The constraint of selecting exactly one tube per video,
however, assumes that there is at least one tube containing
the object and limits the amount of information extracted
from the data. In some cases, a video might contain more
than one object instance or might not contain the object
at all. We therefore extend the approach proposed by [19]
and reformulate Equation (3) to select a varying number
of tubes from each video. To this end, we search for a
set of tubes Sv ⊆ Lv for each video, which can also be an
empty set. The energy of a configuration S = (S1, . . . ,SN )
is then defined as

E (S) =

N∑
v=1

{ |Sv|∑
j=1

Φ
(
ljv
)

+

N∑
w=v+1

|Sv|∑
j=1

|Sw|∑
k=1

Ψ
(
ljv, l

k
w

)
+ α

(
1− γ|Sv|e−γ

|Sv|!

)}
.

(4)
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The first two terms Φ and Ψ are the same as in Equa-
tion (3), but they are computed over all selected tubes Sv290

for each video. The last term is a prior on the number
of expected tubes with object instances per video, mod-
elled by a Poisson distribution Pγ(|Sv|). Since we minimize
Equation (4), we use 1 − Pγ(|Sv|). The parameter γ rep-
resents the expected number of object-overlapping tubes.295

The impact impact of this prior is controlled by α. If we
use the constraint that |Sv| = 1 for all videos v, minimiz-
ing Equation (4) is equivalent to minimizing Equation (3)
since the last term reduces to a constant.

To minimize Equation (4), we use an iterative, greedy
approach. To this end, we extend the label set by an
auxiliary label, i.e., L̂v = {0, 1, . . . , |Tv|}. Let St−1

v denote
the selected tubes for each video at the end of iteration
t− 1. In the next iteration, we then either select no tube,
which corresponds to l̂tv = 0, or one tube per video. We

exclude the already selected tubes as l̂tv ∈ L̂tv = L̂v \ St−1
v

and the energy for iteration t is defined by

E(l̂t1, . . . , l̂
t
N |St−1) =

N∑
v=1

(
Φ(l̂tv) +

N∑
w=v+1

|St−1
w |∑
k=1

Ψ(l̂tv, l
k
w)

+

N∑
w=v+1

Ψ(l̂tv, l̂
t
w)

)
(5)

where

Φ(l̂tv=0) = α

1−
|St−1

v |∑
n=0

γne−γ

n!


and Ψ(0, l̂w) = Ψ(l̂v, 0) = 0.

(6)

In Equation (5), the constant terms

N∑
v=1

|St−1
v |∑
j=1

Φ
(
ljv
)

and

N∑
v=1

N∑
w=v+1

|St−1
v |∑
j=1

|St−1
w |∑
k=1

Ψ
(
ljv, l

k
w

)
(7)

are omitted. The Poisson prior Pγ(|Sv|) is expressed in300

the greedy approach by Equation (6). In other words, the
cost of selecting no tube corresponds to the probability
that the video contains more than |St−1

v | tubes with object

instances. Using Φ̂(l̂tv) = Φ(l̂tv) +
∑
w

∑
k Ψ(l̂tv, l

k
w), we can

rewrite Equation (5) as305

E(l̂t1, . . . , l̂
t
N |St−1) =

N∑
v=1

(
Φ̂(l̂tv) +

N∑
w=v+1

Ψ(l̂tv, l̂
t
w)

)
.

(8)
Accumulating binary potentials into the unaries as in

Equation (8) encourage tubes selected in the present iter-
ation to be similar to those in the past. This can cause
undesirable effects as errors in the present iteration are
propagated to the next. In this regard, independently op-310

Algorithm 1 Greedy inference procedure

1: procedure Infer(S1, . . . ,SN )
2: Initialize S0

v = ∅ , L̂v = {0, 1, . . . , |Tv|} ∀ 1 ≤ v ≤ N
3: Precompute unaries Φ(l̂v) and binaries Ψ(l̂v, l̂w)
4: Iterator t = 0
5: Continue = True
6: while Continue do
7: t = t+ 1
8: Update set of possible labels as L̂tv = L̂v \ St−1

v

9: Obtain (l̂t1, . . . , l̂
t
N ) by minimizing Equation (9)

10: Update Stv = St−1
v ∪ l̂tv if l̂tv 6= 0

11: Continue = True iff l̂tv 6= 0 for any v
12: end while
13: return {St1, . . . ,StN}
14: end procedure

timizing each iteration can be advantageous as verified in
our experiments and is formulated as

E(l̂t1, . . . , l̂
t
N |St−1) =

N∑
v=1

(
Φ(l̂tv) +

N∑
w=v+1

Ψ(l̂tv, l̂
t
w)

)
.

(9)
We use Tree-Reweighted Message Passing [73] for min-

imizing Equation (8) or (9) and update the solution set

for each video by Stv = St−1
v ∪ l̂tv if l̂tv 6= 0. The optimiza-315

tion procedure terminates if l̂tv = 0 for all videos v. The
greedy approach is described in Algorithm 1. While this
does not necessarily converge to the global minimum of
Equation (4), it produces satisfying results as we show in
our experiments.320

The proposed formulation can also be used to infer
instances of object classes from videos or images without
human context since it can be combined with any type of
unary and pairwise potentials. In this work, however, we
focus on explicit modeling of human context for the task325

and therefore introduce potentials that model appearance
similarity as well as functionality of the object class.

3.3. Unary potentials Φ

Unary potentials are used to measure the quality of
tube lv in video v. It is composed of four aspects each330

of which aim to select tubes tightly bound to objects and
interacted with. They are described as follows.

3.3.1. Appearance Saliency

Appearance saliency is a commonly used objectness
measure since the appearance of an object generally stands
out from the background. We base the saliency of the
kth frame of a tube on two distributions. While the first
captures the RGB or RGB-D distribution computed on re-
gion Ik inside the tube, the latter captures the distribution
from the region Sk equal to and surrounding Ik. Saliency
for frame k is then computed as the χ2 distance between
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the two. Assuming tube saliency factorizes over individual
frames, we have

Φapp(lv) =
1

K

K∑
k=1

(
1− 1

2

∑
i

(Ik,i − Sk,i)2

Ik,i + Sk,i

)
. (10)

The effect of the unary potential is that it penalizes tubes
that are loosly or partially bound around objects. In ei-335

ther case, appearance inside and outside the tube is more
similar than for a tightly bound case.

3.3.2. Pose-object Relation

This is a measure to evaluate if the tube is being inter-
acted with by the human. Given the frame k, we propose
to evaluate the 2d or 3d Euclidean distance between the
locally active end effector joint jk of the human pose and
the center ck of the tube in that frame. To make the
measure robust to pose estimation errors and interactions
spanning short time durations e.g. interaction with a bowl
during eating cereal, we perform α = 0.3 trimmed mean
filtering. Assuming that the measure factorizes over indi-
vidual frames, we have

ΦPose(lv) =
1

K

(1−α)·K∑
k=α·K

‖cD(k) − jD(k)‖ (11)

where D is a look up table to index over the sorted list of
distances.340

3.3.3. Body part avoidance

Body part avoidance guides the energy functional to-
wards meaningful solutions in the weakly supervised set-
ting. The need is highlighted in the case of body parts
which are consistently present in all videos, thereby guid-
ing the optimization to these trivial solutions. Without
the aid of this term, background regions corresponding to
body parts such as faces and hands, which occur in all
videos, will be selected instead of objects. We model ap-
pearance of the body as mixture comprising models for
skin, upper and lower bodies. The potential is then de-
fined as

Φbody(lv) = max {p̄skin(I), p̄upper(I), p̄lower(I)} ,

with p̄x(I) =
1

K

∑
k

px(Ik) (12)

where Ik is the color histogram of the tube at frame k. We
use 5-component Gaussian mixture models for both upper
and lower bodies, learned directly using pixels around rel-
evant joints of the estimated pose. We use a generic model345

for skin [74].

3.3.4. Size prior

A prior on the size of an object is an important cue that
can be inferred relative to the human size in human-object
interaction scenarios. In other words, there are bounds

on the physical size of an object a human can interact
with. E.g. interactions with phone, plate and markers are
possible, but not with the floor or the cap of a marker.
Such video level priors can be helpful when tubes are very
small, rendering other potentials unreliable. The prior on
the object size is modelled as a Gaussian distribution given
as

Φsize(lv) = exp

(
(wlv − 2wh)2 + (hlv − 2hh)2

2σ2
h

)
(13)

where (wh, hh) and (wlv , hlv ) are average width and height
of the hand and tube respectively and σh is 1.5 times the
average size of the hand.350

3.3.5. Unary potential

The final unary potential is formed by linearly combin-
ing the four terms as

Φ (lv) = λ1Φapp (lv) + λ2Φpose (lv)

+ λ3Φbody (lv) + λ4Φsize (lv)
(14)

where the weighting parameters λi are learned from a held
out validation set as explained in Section 4.

3.4. Pairwise potentials Ψ

The pairwise potential measures the similarity between355

two tubes lv and lw and is composed of two terms. The first
term measures the inter-tube appearance similarty and the
second term measures the similarity of their motion during
interaction.

3.4.1. Shape360

We follow [14] and measure the appearance similarity
between two tubes based on PHOG [75]. The appearance
of a tube is described by a multiresolution histogram of
gradients computed over 50 uniformly sampled frames in
the tube. Further, the two sequences are first aligned using365

dynamic time warping to account for varying object ap-
pearance during interaction. The warping is performed us-
ing the joint locations of the head, shoulders and hands as
features. Since the alignment between two distinct action
sequences is meaningless, we retain the original tubes if the370

alignment error exceeds a certain threshold. The pairwise
potential Ψshape(lv, lw) defined as the median χ2 distance
between PHOG features from corresponding frames k of
tubes lv and lw is given as

Ψshape(lv, lw) = median
k

{
1

2

∑
i

(
Pωv(k),i − Pωw(k),i

)2
Pωv(k),i + Pωw(k),i

}
(15)

where ωu is the dynamic time warping function for tube375

lu and Pωu(k),i is ith bin of the PHOG feature extracted

from the kth frame of tube lu after warping.
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(a) Unary Potential (See caption for details): Appearance Saliency

(b) Unary Potential: Pose-object Relation

(c) Unary Potential: Body part avoidance

(d) Unary Potential: Size prior

(e) Pairwise Potential: Shape

(f) Pairwise Potential: Functionality

Figure 3: Illustrating the unary and pairwise potentials. Bounding boxes in the first two columns favour the energy in
Equation (4) by decreasing it in comparison with those on the last two columns. (a)–(d) correspond to unary potentials
and illustrate two distinct favorable and an unfavorable cases each. (e)–(f) correspond to pairwise potentials and illustrate
a single favorable and unfavorable case. Temporal paths of the most active joint location and the bounding box are
marked in yellow and cyan respectively.
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[14] modif-[14] Equation (3) Equation (8) Equation (9)

ETHZ-Action 0.063 0.249 0.447 0.439 0.471
CAD-120 0.039 0.246 0.410 0.393 0.423
MPII-Cooking 0.023 0.221 0.342 0.333 0.348

Table 1: Average class-IoU of the proposed model for the three datasets. The Equation (9) which infers multiple tubes
per video outperforms Equation (3) which extracts a single tube per video and [14] which relies on motion segments and
object appearance and ignores object functionality.

3.4.2. Functionality

Assuming relative trajectories of objects with respect
to the human correlate with object functionality, we mea-
sure the relative Euclidean distance between the center of
the tube and the human. After having preprocessed the
tubes as for the shape potential, we sample 50-pairs of cor-
responding frames uniformly. Given frame k, we compute
the distance between the center cu(k) of the tube lu and
the head position hu(k) and normalize it by the distance
between the head and the locally active end effector ju(k):

du(k) =
‖hu(k) − cu(k)‖
‖hu(k) − ju(k)‖

. (16)

While the normalization accounts for lack of 3d informa-
tion in 2d human poses, it also compensates for varying
body sizes in 3d human poses. Given the dynamic time
warping functions ω∗, the potential Ψfunc(lv, lw) is then
the median of these differences:

Ψfunc(lv, lw) = median
k

{
|dωv(k) − dωw(k)|

}
. (17)

Pairwise potential The final pairwise potential is formed
by linearly combining the two terms as

Ψ (lv, lw) = λ5Ψshape (lv, lw) + λ6Ψfunc (lv, lw) (18)

where weighting parameters λi are learned together with
the weights of the unary potential (14) from a validation380

set.

4. Experiments

We evaluate the proposed method on two RGB-D datasets
and one RGB dataset1, which represent a rich variety of
modalities: ETHZ-Activity [76], CAD-120 [22] and MPII-385

Cooking [20]. The ETHZ-Activity is an RGB-D dataset
composed of a time of flight and color camera with a reso-
lution of 170×144 and 640×480 respectively. The dataset
contains 6 different actors each performing high level ac-
tivities with 12 objects totalling to 143 video sequences.390

An 8-joint upper body 3d human pose is extracted using
a model based method. While interactions are mostly re-
stricted to a single object, there is significant intra-class
variation in object appearance due to the interaction. The

1Annotations for all three datasets can be found at http://ps.

is.tue.mpg.de/person/srikantha

12 objects range from being medium sized e.g. brush and395

teapot to small sized e.g. marker and videogame. A typical
frame illustrating the relative size of an object is shown in
Figure 4.

CAD-120 is an RGB-D dataset captured using the Kinect
sensor. Therefore both color and depth images have a res-400

olution of 640 × 480. The dataset contains 4 actors per-
forming 10 different high level activities totalling to 120
video sequences. The OpenNI SDK is used to extract hu-
man pose consisting of 15 3d whole body joint locations
with binary confidence flags for each joint. Noise in the405

pose is more pronounced for limb joints i.e. hands and legs.
Some activities involve multiple instances of the same ob-
ject e.g. stacking objects or multiple objects e.g. taking
medicine that indicates presence of medicinebox and cup.
It must be noted that the classes book and remote appear410

in only three video sequences each.
The MPII-Cooking is a high resolution (1624 × 1224)

RGB dataset. It contains 2 high level activities performed
by 12 different actors totalling to 65 video sequences. The
extracted human pose consists of 8 2d joint locations for415

the arms. Therefore, in the pairwise potential Ψfunc(lv, lw)
in Equation (17), we replace the location of the head by
the mean location of both shoulders. This is a challenging
dataset where objects evolve in appearance and frequently
undergo occlusions. E.g. bread evolves from being a layer420

of dough to an arrangement of vegetables during the course
of preparing a pizza.

For evaluation, objects in all datasets are labelled by
drawing tight bounding boxes for every 10th frame and
interpolating intermediate bounding boxes.425

We also compare with a weakly supervised approach [14]
and an unsupervised approach [76]. The method in [76]
discovers objects by clustering trajectories of human joint
locations. The method in [14] uses motion segments to

Figure 4: Illustrating human-object interaction from
ETHZ-Action dataset, CAD-120 dataset and MPII cook-
ing dataset with human pose overlayed in orange and ob-
jects with a red bounding box.
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(a) ETHZ-action (b) CAD-120

(c) MPII-Cooking (d) Algorithm (1)

Figure 5: (a–c) The accuracy is measured as the fraction of bounding boxes with IoU ratio greater than a given threshold.
The x-axis plots 1-IoU i.e. the higher the value on the x-axis, the more tolerant is the success threshold and the higher
the accuracy. The accuracy presented is averaged over all classes. (d) Number of selected tubes inferred in each iteration.
After the third iteration, the approach has converged because no new tubes are added to the set of selected tubes Stv.

generate object proposals which are then fed into an energy430

functional similar to Equation (3). The unary and pair-
wise potentials are inspired purely by appearance features.
While unary potentials are composed of objectness [77],
intra-tube shape consistency and bounding-box heuristics,
pairwise potentials are based on inter-tube shape consis-435

tency. Their solution involves extracting one tube per
video which best represents the latent object. In a similar
framework [19] generates object proposals as described in
Section 3.1 and uses the potentials as in Section 3.3.

4.1. Inference440

The output of the system is a collection of tubes that
best describe an object class common to all input videos.
detected instances of object classes are shown in Figure 8.
In order to evaluate the quality of these tubes, we study
frame- and class-wise PASCAL IoU measures. A frame-445

IoU measure is defined as a ratio of areas of intersec-
tion over union of the ground truth and inferred bounding
boxes. A tube-IoU is defined as the average of all frame-
IoUs. Similarly, a class-IoU is defined as the average of all
inferred tube-IoUs.450

To learn the parameters α, λ and γ of the energy model,
we use ground-truth object annotations of one randomly
chosen object class per dataset as validation: puncher
(ETHZ-Action), milkbox (CAD-120) and whisker (MPII-
Cooking). We perform a grid-search in {0.05, 0.25, 0.50, 0.75, 1.00}455

to set these parameters and take the configuration that
maximizes class-IoU for the validation class. We therefore

exclude validation classes from all performance evaluations
that follow.

4.2. Comparison460

In the context of detecting objects from videos with
activities, the experiments show that naive motion based
segmentation as in [14] and object proposal method [78]
fail at varying levels of severity. Improved performance
is shown in [19] due to improved object proposals as gen-465

erated by Section 3.1 and the inclusion of object func-
tionality in Equation (3). We show that extending the
approach [19] to select a varying number of tubes from
each video improves the quality of inferred tubes and the
subsequent object detection performance. We find the470

framework presented in Equation (8) to be prone to noise
thereby often yielding suboptimal solutions and the inde-
pendence assumption incorporated in Equation (9) helps
alleviate this limitation. We further present details of the
experiments below.475

Firstly, we compare an object proposal technique [78]
against the proposed tube generation process. We consider
every 10th frame in the ETHZ-Action dataset for this ex-
periment. The recall of [78] for (102, 103, 104) proposals
per image was (0.19, 0.58, 0.67) respectivly, against 0.65480

for 30 tube proposals as generated in Section 3.1.
Regarding overall accuracy, we compare a method for

learning from weakly labelled videos [14] with an approach
that optimizes Equation (3). The average class-IoU for
all three datasets is presented in Table 1. Optimizing485
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(a) (b) (c)

(d) (e) (f)

Figure 6: Sensitivity of parameters for Equations (14) and (18). Accuracy is measured by average class-IoU.

Equation (3) outperforms [14] significantly. The poor per-
formance of [14] is due to the inferior quality of object
proposals which are extracted based on dominant motion
segments, which overlap mostly with human body parts
instead of objects. We therefore evaluate the method by490

replacing object proposals with those generated from Sec-
tion 3.1 but retaining the energy functional proposed in [14].
We denote the modified approach as modif-[14] in Ta-
ble 1. While modif-[14] performs significantly better than
its baseline [14], it still underperforms when compared to495

Equation (3).
Equations (8), (9) extend Equation (3) by inferring

multiple tubes. While the former lags behind the baseline
Equation (3) on all three datasets, the latter performs fa-
vorably in ETHZ-Action and CAD-120 datasets and com-500

parably in the MPII-Cooking dataset. To reason about
the superior performance of Equation (9) against that of
Equation (8), we calculated the energy as in Equation (4)
for the solutions obtained by both methods. We found
that energies pertaining to Equation (9) were lower in 9505

out of 12 classes in ETHZ-Action and 6 out of 9 classes
in CAD-120 dataset. A possible reasoning for this could
be that assuming independence between iterations as in
Equation (9) can better handle noise without propagating
it into further iterations.510

To further evaluate the quality of inferred tubes, we de-
fine class-accuracy as the fraction of bounding boxes with
an IoU ratio greater than a given threshold. Figure 5 shows
class-accuracy averaged over all classes for decreasing IoU
ratios. Because of the inferior performance of [14], we515

show the accuracy for modif-[14]. As can be seen, modif-
[14] underperforms in all three datasets verifying the sub-
optimalily of related potentials. The introduction of new
potentials as in [19] shows improvements, the biggest of
which is for the ETHZ-Action dataset at 1-IoU=0.8 where520

the former performs at 0.36 and the latter at 0.86. Al-
though introducing multi-tube inference as in Equation (8)
results in reduced performance, the independence assump-
tion in Equation (9) is favorable on all three datasets.
Significant improvements are found in ETHZ-Action and525

MPII-Cooking at 1-IoU=0.5 with around 10% increase
in accuracy from the performance of Equation (3). At
IoU=0.5, the accuracies of Equations (9), (3) and modif-
[14] are (0.62, 0.48, 0.16) for ETHZ-Action, (0.60, 0.56,
0.42) for CAD-120 and (0.63, 0.53, 0.29) for the MPII-530

Cooking dataset respectively.
The number of tubes selected in each iteration for the

datasets is shown in Figure 5(d). For the ETHZ-Action
dataset, all tubes are selected after two iterations. For
the other two datasets, the approach converges after three535

iterations. Using the multiple instance inference of Equa-
tion (9), a total of 124, 310 and 488 tubes are selected for
the ETHZ-Action, CAD-120 and MPII-Cooking dataset
respectively. As a comparison, single instance inference of
Equation (3) selects only 106, 126 and 244 tubes for the540

datasets.
Regarding running times, the CPU only implementa-

tion takes about 1 hour to extract 30 tubes per video and
about 5 hours to precompute unary and pairwise poten-
tials. The inference procedure is fast and takes about 15545

seconds for a collection of 20 videos.

4.3. Evaluating parameter sensitivity

In our experiments, we have estimated the parameters
of Equations (14) and (18) on a validation set as described550

in Section 4.1. In order to show the sensitivity of param-
eters, we vary each of the learned weights and measure
average class-IoU as shown in Figure 6(a)–(f). As can
be seen, while varying almost any potential has minimal
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modif-[14] Equation (3) APP APP+SIZ FUN APP+FUN FUN+SIZ

ETHZ-Action 0.249 0.447 0.192 0.305 0.292 0.312 0.390
CAD-120 0.246 0.410 0.168 0.191 0.147 0.202 0.350
MPII-Cooking 0.221 0.342 0.079 0.149 0.229 0.235 0.288

Table 2: Studying the contribution of various potential groups in Equation (3). Average class-IoU is presented for
(APP+SIZ+FUN) for the three datasets. All three types of potentials that model object appearance (APP), size prior
(SIZ) and object functionality (FUN) are important for the final performance.

Φapp Φpose Φbody Φsize Ψshape Ψfunc

ETHZ-Action -3.27 -11.40 -6.09 -13.17 -2.43 -3.00
CAD-120 -9.48 -0.85 -6.38 -9.19 -10.06 -11.71
MPII-Cooking -10.33 -7.47 -7.47 -3.54 -9.79 -34.00

Table 3: Percentage change in average class-IoU performance when any given potential is discarded from Equation (9).

effect on MPII-Cooking, the effects are more drastic for555

ETHZ-Action. The performance on CAD-120 is sensitive
to variations in Φbody and Ψshape.

4.4. Impact of Potentials

We group the potentials into three categories to study
the nature of contributions from the designed potentials.560

They are: APP consisting of potentials that are inher-
ent to object appearance {Φapp,Ψshape}, SIZ denotes the
size prior {Φsize} and FUN consisting of potentials derived
from human-object interaction {Φpose,Φbody,Ψfunc}. Ta-
ble 2 presents the performance of Equation (3) under var-565

ious group combinations.
The foremost observation is that the group APP un-

derperforms in comparison with modif-[14] for all datasets.
This is an expected fall in performance due to the differ-
ence in the representation of appearance information by570

both methods. The performance improves upon adding
the size prior (APP+SIZ). The importance of incorporat-
ing human-object interaction is seen when the functional-
ity terms (FUN) outperform modif-[14] and APP on both
ETHZ-Action and MPII-Cooking datasets. Further, com-575

bination of (FUN+APP) outperforms individual settings
indicating that both groups encode complementary infor-
mation. Finally, the pair of (FUN+SIZ) performs best
amongst all proper subset combinations attaining more
than 80% of the maximum recorded performance. This in-580

dicates that all potential groups are important for achiev-
ing maximum performance.

We now study the effect of discarding a single poten-
tial from the model in Equation (9). Corresponding per-
centage change in class-IoU performance is presented in585

Table 3. It can be observed that eliminating any potential
causes a drop in performance. Appearance based features
have minimal impact on the ETHZ-Action dataset as they
are not reliable for small objects. Discarding Ψfunc most
adversely affects the MPII-Cooking dataset due to closer590

interaction between human and objects in comparison with
the other two datasets. On the other hand, discarding
Φpose has the least impact on the CAD-120 dataset. This

is because the inferred human pose is noisy due to missing
joints and poor localization accuracy. In fact a, qualitative595

evaluation confirmed that the pose quality for CAD-120 is
the lowest among the three datasets. Φbody and Φsize re-
duce the performance for all three datasets. Due to the
small size of the objects in ETHZ-Action, Φsize has the
biggest impact on this dataset. Studying the unaries and600

pairwise potentials using Equations (3), (8) showed similar
trends.

Further, we study the robustness of pose-related po-
tentials with respect to strong pose estimation noise on
the CAD-120 dataset. To this end, we add normally dis-605

tributed noise with variance 100cm2, 200cm2 and 400cm2

to each 3d joint position. The average class-IoU then drops
to 0.365, 0.342 and 0.323 respectively from the baseline of
0.423 (see Table 1). The performance, however, is still
higher than without using these potentials (see APP+SIZ610

in Table 2).

4.5. Evaluating object models

We now evaluate the quality of inferred tubes from
Equation (9) in terms of object detection performance.
Training and testing data are obtained by defining splits615

on each dataset such that they share no common actors.
For training, we consider data from 3 out of 4 actors in
CAD-120, 5 out of 6 actors in ETHZ-Action and 9 out
of 12 actors in the MPII-Cooking dataset. The rest of
the data i.e. Subject-1 for CAD-120, actor-14 for ETHZ-620

Action and {s18,s19,s20} for MPII-Cooking is used for
testing.

For object detection, we use a Hough forest [32] with 5
trees. Each tree is trained until a maximal depth of 25 and
with 50,000 positive and 50,000 negative patches (drawn625

uniformly from the background). We do not make use of
depth data for this experiment. For comparison, we use
manually annotated bounding boxes of training images,
i.e. every 10th frame of the training sequences. This is de-
noted as ‘GTr.’ in Table 4. The ‘Infer’ training data is630

based on an equal number of frames from the automati-
cally extracted tubes by Equation (9).
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Class GTr. Infer Class GTr. Infer Class GTr. Infer Class GTr. Infer

ETHZ-Action

brush 45.1 38.0 calcul. 100.0 100.0 camera 83.5 73.0 remote 49.4 36.7
mug 38.0 30.2 headph. 69.8 63.7 marker 39.7 39.7 teapot 63.2 59.2

videog. 78.3 77.6 roller 99.6 66.1 phone 0.05 11.9 Avg. 60.6 54.2

CAD-120

book 11.2 03.2 medbox. 58.3 53.3 bowl 24.5 24.5 mwave. 71.4 71.0
box 24.4 21.5 plate 16.2 14.3 cup 14.8 12.9 remote 14.1 08.3

cloth 20.1 18.6 Avg. 29.4 25.3

MPII-Cooking

bowl 69.2 64.4 spiceh. 100.0 100.0 bread 25.5 13.2 squeez. 61.5 61.5
plate 43.4 43.4 tin 33.0 26.4 grater 02.2 01.2 Avg. 47.8 44.3

Table 4: Average precision (%) for different datasets comparing object models built from ground truth data (GTr.) and
inferred data (Infer) from Equation (9).

The results show that optimal performance is achieved
for categories like calculator, marker in ETHZ-Action, bowl,
microwave in CAD-120 and spiceholder, squeezer in MPII-635

Cooking. On the other hand, a loss in performance is ob-
served for many categories due to weaker supervision. This
is due to noisier extracted tubes in comparison with manu-
ally annotated data. Nevertheless, performances of the ob-
ject detectors trained on weakly supervised videos achieve640

89.4% (ETHZ-Action), 86.1% (CAD-120) and 92.6% (MPII-
Cooking) of that from full supervision.

We now compare the object detection performance when
training data is obtained from Equations (3), (8), (9) in
Figure 7. It can be observed that object detectors based645

the Equation (9) generally outperform those from Equa-
tions (3) and (8). Particularly, the average precision is im-
proved when compared to Equation (3) in all three datasets
from 53.2% to 54.2% for ETHZ-Action, 24.4% to 25.3%
for CAD-120 and 35.3% to 44.3% in the MPII-Cooking650

dataset. However, there is a small loss in performance for
a few classes such as camera, headphone in ETHZ-Action
and book, remote in the CAD-120 dataset.

We also compare with [76] which is an unsupervised
approach that segments and clusters videos based on pose655

features. [76] generates 20 clusters for the ETHZ-Action
dataset without labels and only 3–21 object samples per
cluster while our approach generates more than 300 sam-
ples per class. Although the resulting clusters cannot be
directly compared with our approach, we manually la-660

belled the clusters and trained object detectors for all 12
classes. The resulting average precision on ETHZ-Action
is 24.85% in comparison to 54.20% of our approach.

4.6. Refining objectness using object detectors665

Approaches like [79, 80] propose a weakly supervised
method where a detector is initialized using a few seed ex-
amples and later refined by incorporating new detections.
In order to evaluate if iterating between training the de-
tector and inferring training data from videos improves670

accuracy, we apply the object detector (Section 4.5) to
the tubes and use the detector confidence as a fifth unary

potential in Equation (14). The detector confidence is ob-
tained by max pooling frame-wise detection confidences
over any given tube. The process is iterated until the set675

of selected tubes does not change anymore.
Repeating the experiments as described in Sections 4.1–

4.2 with the augmented model, the procedure for ETHZ-
Action and CAD-120 terminated after the first iteration
without any improvement in average class-IoU measure.680

However, the procedure for MPII-Cooking terminated af-
ter two iterations and yielded a marginal improvement
from 0.342 to 0.343 (cf. Table 2). The object detection
performance remained unchanged for all datasets.

5. Conclusion685

In this work, we have addressed the problem of de-
tecting instances of small and medium sized objects from
weakly labelled activity videos. Our experiments show
that approaches relying entirely on object motion or ap-
pearance fail for this task. Although using only object690

appearance is shown to be insufficient, coupling it with ob-
ject functionality leads to greatly improved performance.
An interesting aspect is that the results reveal the com-
plementary nature of functionality and appearance related
potentials for detecting objects. In order to maximize uti-695

lization of data, we propose a framework for inferring mul-
tiple object instances from each video which is solved using
a greedy approach. The superior quality of these tubes are
verified by the experiments. The generalization capabili-
ties of our approach are demonstrated on three datasets700

that span a variety of different activities, modalities (RGB
vs. RGB-D), and pose representations (2d vs. 3d). Finally,
our weakly supervised approach outperformed an unsuper-
vised approach and achieves between 86% and 92% of the
performance of a fully supervised approach for object de-705

tection.

Acknowledgements: Authors acknowledge financial sup-
port from the DFG Emmy Noether grant (GA 1927/1-1).
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(a) ETHZ-Action

(b) CAD-120

(c) MPII-Cooking

Figure 7: Average precision (%) for object detection on different datasets given training data from groundtruth and
from Equations (9), (8) and (3). 13



Figure 8: Detected instances of the object classes as in Equation (3): Marker, Mug, Camera, Roller, Milkbox, Bowl,
Cloth, Microwave, Plate, Tin, Bread, Squeezer and Failure cases Teapot, Brush. The first image in each row shows
relative object size by illustrating a typical action scene with overlayed human pose and a bounding box around the
object of interest. Since the objects are relatively small, images are best viewed by zooming in.
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