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A. Qualitative comparisons to prior image-
mask GAN models

A qualitative comparison of OSMIS to prior image-mask
GAN models, SemanticGAN [7] and DatasetGAN [11], is
presented in Fig. A, corresponding to the quantitative com-
parison of these models from Table 2. The displayed sam-
ples were generated with a checkpoint that achieved the
lowest SIFID [9]. Like OSMIS, SemanticGAN was trained
from scratch, using a single provided image-mask pair as
real data. On the other hand, the training of DatasetGAN
consisted of two stages: pre-training of the StyleGAN [5]
backbone architecture on the single provided training im-
age, and training a label synthesis branch with manual seg-
mentation annotations of generated images. In our one-
shot setup, since StyleGAN typically collapsed to generat-
ing the same image, annotating a single generated sample
was enough to train the label synthesis branch.

As seen from Figure A, both SemanticGAN and Dataset-
GAN suffer from memorization issues, always producing
the same image that repeats the layout of the training sam-
ple. In Table 2 this is reflected in very low LPIPS diversity
scores achieved by both models. In addition, SemanticGAN
shows unstable training in our one-shot regime, which re-
sults in a low visual quality of generated images and noisy
annotations (note poor performance in SIFID and mIoU in
Table 2). For DatasetGAN, we observed no such instabil-
ities, which made the manual annotation of generated im-
ages straightforward. Despite a good visual image quality
and accurate manual annotation of masks (high mIoU in Ta-
ble 2), the low diversity of DatasetGAN prevents it from
producing useful data augmentation for one-shot segmenta-
tion tasks (see Table 7).

In contrast, OSMIS achieves high diversity and visual
quality of generated image-masks at the same time. For ex-
ample, in the examples from Fig. A our model can change
the number of sails, horse riders, sumo wrestlers, or cars, at
the same time editing the layout of the backgrounds, while
still preserving the realism of objects. Such structural di-

versity of OSMIS enables its effective generation of data
augmentation for one-shot segmentation tasks (see Sec 4.2).

B. Additional details on the application of OS-
MIS to one-shot segmentation tasks

B.1. Details of the experimental setup

Tables 5 and 6 show the performance of one-shot
segmentation networks using different data augmentation
strategies. The simplest strategy is to use no data augmen-
tation, when the fine-tuning of networks is performed only
on a single provided image-mask pair. When fine-tuning
with our synthesized data augmentation, we extend the pool
of the available data with n1 = 85 samples generated by
OSMIS. Finally, when adding standard data augmentation
to the two previous strategies, we apply random combina-
tions of image-mask flipping, zooming, and rotation to the
samples from the pool. The exact method of utilizing data
augmentation depends on the segmentation network, as de-
scribed next.

OSVOS [2] fine-tunes weights of a pre-trained segmen-
tation network on the image and mask of the first frame of a
given video sequence. At each fine-tuning epoch, we dou-
ble the batch size and randomly add generated image-mask
pairs to the original data. Therefore, we keep the 50%-50%
ratio between real and synthetic data, which we found to
yield the best video segmentation performance.

STM [8] scans a given video sequence frame-by-frame,
starting from the first frame, for which a mask annotation is
provided. This image-mask pair, as well as each K-th pair
of a video frame and its segmentation prediction are added
to a spatio-temporal memory bank. The memory bank is
used to make the segmentation prediction of the latest video
frames more accurate. To employ data augmentation, we
added synthesized image-mask pairs to the STM memory
bank at step 0, before processing the first video frame. To
fit the memory bank into GPU memory, we had to limit
the number of added samples to 10, which were sampled
randomly from the synthetic pool.
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Training pair SemanticGAN [7] DatasetGAN [11] OSMIS

Figure A. A quantitative comparison of OSMIS to previous image-mask GAN models SemanticGAN [7] and DatasetGAN [11]. Both
the comparison models suffer from memorization, repeating the layout of the training samples, while SemanticGAN also achieves poor
visual quality of images and masks due to training instabilities. In contrast, OSMIS achieves both diversity and quality, placing foreground
objects in different locations in the scene and editing the layouts of backgrounds.

RePRI [1] trains a small pixel-level classifier given a sin-
gle support image-mask pair containing an object of a pre-
viously unseen class. We simply provide synthetic image-
mask pairs as data augmentation for the original data. To
fit the extended support set into GPU memory, we limited
the number of added samples to 10. This way, the task of
RePRI could be technically regarded as 11-shot semantic
image segmentation, where all the available support data
originates from a provided data sample.

B.2. Ablation on filtering out bad-quality samples

Filtering out noisy synthetic examples before forming a
pool of synthetic samples is an important step to achieve
good performance of data augmentation. For example, us-

ing generated image-mask pairs without filtering resulted
in modest or negative performance gains for one-shot seg-
mentation networks (see Table A). On the contrary, a simple
strategy to filter out 15% of bottom-ranked generated im-
ages by SIFID, computed after the first pooling layer of the
InceptionV3 network, helps to reduce the impact of bad-
quality augmentation and, in effect, substantially improve
the final segmentation performance.

However, we observed that the SIFID metric is biased
towards low-level image statistics, such as color and texture
distributions, and is not indicative of the quality of gener-
ated images at higher scales. We illustrate this in Fig. B,
where we display visual examples of images at different lev-
els of SIFID, obtained after the first pooling layer, second
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Figure B. Generated images shown for different levels of SIFID, computed at various InceptionV3 layers. We observed that SIFID at the
earliest InceptionV3 layers is biased towards low-level image statistics, such as colors and small textures, and is not indicative of image
quality at higher scales (appearance of objects, layout of backgrounds). Thus, to filter out noisy generated examples, we use a joint ranking
of images at different InceptionV3 layers.

Data selection η
OSVOS, DAVIS-16 RePRI, COCO0

J&F mIoU
Reference w/o augmentations 78.5 (+0.0) ±0.3 31.2 (+0.0) ±0.1

No data selection - 78.7 (+0.2) ±0.6 30.7 (-0.5) ±0.5

Only SIFID-pool1 15% 79.3 (+0.8) ±0.5 32.2 (+1.0) ±0.4

SIFID-{1,2,3,4} (ours)

5% 79.3 (+0.8) ±0.6 31.9 (+0.7) ±0.4

10% 79.6 (+1.1) ±0.4 32.6 (+1.4) ±0.2

15% 79.8 (+1.3) ±0.3 32.8 (+1.6) ±0.2

25% 79.7 (+1.2) ±0.3 32.3 (+1.1) ±0.2

50% 79.5 (+1.0) ±0.3 32.0 (+0.9) ±0.1

Table A. Impact of synthetic data selection strategies on one-shot
segmentation performance. Bold and underlined show the first and
second best performance.

pooling layer, pre-classifier features, and the final features
of the InceptionV3 network (denoted as SIFID-1,2,3,4).

To account for the quality of generated images at dif-
ferent scales, we ranked synthesized examples by a joint
ranking, taking the average of their ranks across different
SIFIDs. As seen in Table A, filtering out noisy examples
using this strategy helps to boost the performance of one-
shot segmentation networks. Furthermore, we observed that
it helps to significantly decrease the performance variance
between different runs, which generally increased while us-
ing synthetic data augmentation in our experiments.

Finally, we conduct an ablation on how many bottom-
ranked images should be filtered for optimal performance.
Table A demonstrates that the filtering rate should be nei-
ther too low nor too high: filtering out only 5% or 10%
leaves some low quality images that are harmful for the data
augmentation efficiency, while filtering too many samples

(25%, 50%) decreases the diversity of the synthetic data
pool and thus also diminishes its effectiveness.

Overall, we conclude that data filtering is a crucial step
that is needed to achieve high performance gains with the
help of synthetic data augmentation. Table A shows that
our proposed data selection scheme is effective at filtering
out bad generated examples, which results in higher perfor-
mance of one-shot segmentation networks without notably
increasing their variance between runs.

C. Architecture of OSMIS and training details

The architecture of the OSMIS generator and discrim-
inator is summarized in Tables B and C. We build upon
the structure of One-Shot GAN [10], which utilizes ResNet
blocks for both the generator and discriminator, enables
multi-scale gradients (MSG) [3] by employing skip connec-
tions between the latest generator layers and the low-level
discriminator Dlow−level, and provides control over the fi-
nal image resolution by changing the input noise shape.

To achieve image-mask synthesis at a high resolution of
384x640, we set the input noise shape to 3×5, use 8 ResNet
blocks in the generator, 4 ResNet blocks for the low-level
discriminator Dlow−level, and 4 blocks for the object and
layout discriminators Dobject and Dlayout. Before feeding
the intermediate features F (x) = Dlow−level(x) of an input
image x to Dobject, we process it by the masked content at-
tention module (MCA), which forms N content representa-
tions, corresponding to objects or background in the image.
Thus, for the object discriminator we use a batch size which
is N times higher than for other discriminator parts.

9878



We train OSMIS with the ADAM optimizer [6], using
a batch size of 3, momenta (β1, β2) = (0.5, 0.999), and a
learning rate of 0.0002. During training, we use an expo-
nential moving average of the generator weights with a de-
cay of 0.9999, which is used at inference. P0 from Eq. (5)
is set to 15000 epochs. We extend the differentiable aug-
mentation (DA) pipeline used in [10] by using the whole set
of transformations as proposed in [4], which we found ben-
eficial for image quality and diversity. Considering the pro-
vided segmentation mask, we modify the discriminator fea-
ture augmentation (FA), ensuring that it does not interfere
with the learning of the appearance of foreground objects.
For this, the content FA is applied only to the representa-
tion of the background, while for the layout FA, the mixed
spatial areas are sampled respecting the object boundaries
in the segmentation mask. In our experiments, we observed
this to be beneficial for the visual quality of images, as the
model learnt to preserve the objects’ appearance better.
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Operation Input Size Output Size

ConvTransp2D z (64,1,1) up_0 (256,3,5)
ResBlock-Up up_0 (256,3,5) up_1 (256,3,5)
ResBlock-Up up_1 (256,3,5) up_2 (256,6,10)
ResBlock-Up up_2 (256,6,10) up_3 (256,12,20)
ResBlock-Up up_3 (256,12,20) up_4 (256,24,40)
ResBlock-Up up_4 (256,24,40) up_5 (256,48,80)
ResBlock-Up up_5 (256,48,80) up_6 (256,96,160)
ResBlock-Up up_6 (256,96,160) up_7 (128,192,320)
ResBlock-Up up_7 (128,192,320) up_8 (64,384,640)

Conv2D, TanH up_5 (256,48,80) image_3 (3,48,80)
Conv2D, TanH up_6 (256,96,160) image_2 (3,96,160)
Conv2D, TanH up_7 (128,192,320) image_1 (3,192,320)
Conv2D, TanH up_8 (64,192,320) image_0 (3,384,640)

Table B. The OSMIS generator. The configuration is presented for the input noise of size (3× 5) and the final resolution of (640× 384).

Operation Input Size Output Size

Low-level discriminator Dlow−level

Conv2D image_0 (3,384,640) feat_0 (32,384,640)
Conv2D image_1 (3,192,320) feat_1 (8,192,320)
Conv2D image_2 (3,96,160) feat_2 (16,96,160)
Conv2D image_3 (3,48,80) feat_3 (32,48,80)
ResBlock-Down feat_0 (32,384,640) down_0 (64,192,320)

ResBlock-Down
down_0 (64,192,320)

down_1 (128,96,160)
feat_1 (8,192,320)

ResBlock-Down
down_1 (128,96,160)

down_2 (256,48,80)
feat_2 (16,96,160)

ResBlock-Down
down_2 (256,48,80)

F (256,24,40)
feat_3 (32,48,80)

Object discriminator Dobject

MCA F (256,24,40) F_con N×(256,1,1)
ResBlock-Down F_con N×(256,1,1) cont_0 N×(256,1,1)
ResBlock-Down cont_0 N×(256,1,1) cont_1 N×(256,1,1)
ResBlock-Down cont_1 N×(256,1,1) cont_2 N×(256,1,1)
ResBlock-Down cont_2 N×(256,1,1) cont_3 N×(256,1,1)

Layout discriminator Dlayout

Conv2D F (256,24,40) F_lay (1,24,40)
ResBlock-Down F_lay (1,24,40) lay_0 (1,12,20)
ResBlock-Down lay_0 (1,12,20) lay_1 (1,6,10)
ResBlock-Down lay_1 (1,6,10) lay_2 (1,3,5)
ResBlock-Down lay_2 (1,3,5) lay_3 (1,3,5)

Table C. The OSMIS discriminator. The configuration is presented for the input noise of size (3×5) and the final resolution of (640×384).
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