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For completeness, we report the accuracies of our
method for popular domain adaptation datasets using the
standard closed set protocol, where all classes are known in
both domains.

Office dataset

For the Office dataset [11], we run experiments for the 6
domain shifts of the three provided datasets: Amazon (A),
DSLR (D) and Webcam (W). We use deep features extracted
from the fully connected layer-7 (fc7) from the AlexNet
model [7].

Unsupervised setting In the unsupervised domain adap-
tation, we firstly report the classification accuracies follow-
ing the protocol from [11], where we run 5 experiments
for each domain shift using randomised subsamples of the
source dataset. The results of the described techniques are
shown in Table 1, where we compare our method with
generic domain adaptation methods, i.e. TCA [10], gfk [6],
SA [2] and CORAL [12]. At first, we see that ATI outper-
forms all generic domain adaptation methods in average, re-
porting ATI-λ a slight better improvement than ATI. How-
ever, the experiments with the lowest domain shifts between
DSLR and Webcam report no improvement. The locality
constrained formulation, ATI-λ-N1, does perform worse in
the unsupervised setting.

A→D A→W D→A D→W W→A W→D AVG.
LSVM 62.3±3.8 55.8±3.1 42.8±1.6 90.1±0.6 41.2±0.4 92.6±1.5 64.1

TCA [10] 60.3±4.0 54.7±3.0 49.4±1.6 90.7±0.4 46.9±2.3 92.0±0.9 65.7
gfk [6] 61.3±3.7 55.7±3.0 45.6±1.6 90.6±0.4 43.1±2.3 93.4±0.9 65.0
SA [2] 60.6±3.5 55.0±3.1 47.3±1.6 90.9±0.6 44.4±1.4 93.3±0.8 65.3
CORAL [12] 64.4±3.9 58.9±3.3 52.1±1.2 92.6±0.3 50.0±1.0 94.0±0.6 68.7

ATI 67.6±3.0 62.3±3.1 54.8±1.3 90.3±0.8 52.4±2.1 92.6±1.7 70.0
ATI-λ 67.3±2.3 62.6±2.5 55.2±2.6 90.1±0.6 53.4±2.5 92.7±2.5 70.2
ATI-λ-N1 64.6±2.9 60.9±1.3 51.9±1.9 90.2±0.9 48.1±1.6 93.7±2.1 68.2

Table 1: Comparison on the unsupervised Office
dataset [11] with 31 shared classes and 6 domain shifts us-
ing the protocol from [11].

In order to compare our method with current state-of-
the-art CNN-based domain adaptation methods [8, 9, 3],

A→D A→W D→A D→W W→A W→D AVG.
LSVM 65.7 60.3 43.2 94.7 44.0 98.9 67.8

DAN [8]∗ 66.8 68.5 50.0 96.0 49.8 99.0 71.7
RTN [9]∗ 71.0 73.3 50.5 96.8 51.0 99.6 73.7
BP [3]∗ - 73.0 - 96.4 - 99.2 -

ATI 70.3 68.7 55.3 95.0 56.9 98.7 74.2
ATI-λ 69.0 67.0 56.2 95.0 56.9 98.7 73.8

Table 2: Comparison on the unsupervised Office
dataset [11] with 31 shared classes and 6 domain shifts
taking all source samples as in [5]. ∗ Numbers are taken
from [9].

we also report the accuracies when taking all source sam-
ples in a single run as described by [5]. As shown in Ta-
ble 2, our method outperforms the state-of-the-art in aver-
age. While [9] performs better when both datasets are sim-
ilar, our methods outperforms [9] by +5.7% and +5.9% on
the two most difficult cases D→A and W→A, respectively.

A→D A→W D→A D→W W→A W→D AVG.
LSVM (s) 64.6±3.8 56.4±2.7 45.8±1.5 90.5±0.4 42.3±1.4 93.6±1.2 65.5
LSVM (t) 80.1±3.0 76.4±3.8 58.5±1.4 76.4±3.8 58.5±1.4 80.1±3.0 71.7
LSVM (st) 82.6±5.5 77.0±2.5 63.4±1.6 94.0±0.8 61.8±1.1 96.3±0.8 79.2

DDC [16]* - 84.1±0.6 - 95.4±0.4 - 96.3±0.3 -
DAN [8]* - 85.7±0.3 - 97.2±0.2 - 96.4±0.2 -
MMC [15]* 86.1±1.2 82.7±0.8 66.2±0.3 95.7±0.5 65.0±0.5 97.6±0.2 82.2
ATI (labels t) 85.0±2.1 78.3±2.3 63.6±1.5 94.0±0.8 62.3±0.9 96.4±0.8 79.9
ATI 85.5±2.9 82.4±1.1 65.1±1.3 93.4±0.9 65.6±1.5 95.7±1.1 81.3
ATI-λ 85.6±2.6 82.6±0.5 65.3±1.3 93.3±1.0 65.7±1.7 95.7±1.1 81.4
ATI-λ-N1 88.1±1.7 83.1±2.3 66.0±1.4 93.9±1.2 65.9±1.5 96.2±0.8 82.2
ATI-λ-N2 87.0±3.5 84.6±3.5 65.3±1.0 93.6±1.2 65.9±1.8 95.8±1.3 82.0

Table 3: Comparison on the semi-supervised Office
dataset [11] with 31 shared classes and 6 domain shifts,
following the protocol from [11]. ∗ Numbers are taken
from [8] and [15].

Semi-supervised setting We also test the Office dataset
in its semi-supervised setting, following the protocol
from [11] in 5 runs with random subsamples of the source
dataset. In this experiments, we also include ATI-λ-N2

with locality constraints using 2 nearest neighbours and
compared our methods with the state-of-the-art CNN-based



methods [16, 8, 15]. The accuracies of our methods are
based on the joint linear SVM training with all source sam-
ples and the provided labelled target samples. The results
are reported in Table 3. We also report the accuracies when
we estimate the mapping W (6) using only the labelled tar-
get samples without solving the individual assignments (1),
which is denoted by ATI (labels t). This performs worse
than ATI and the best result is achieved by ATI-λ-N1. Our
method achieves the same average accuracy as MMC [15].

Office+Caltech dataset

A→C A→D A→W C→A C→D C→W
LSVM 83.3 84.1 77.5 91.8 89.1 82.3

CORAL [12] 83.2 86.5 79.6 91.4 86.6 82.1
BP [3] 84.6 92.3 90.2 91.9 92.8 93.2

DDC [16]* 83.5 88.4 83.1 91.9 88.8 85.4
DAN [8]* 84.1 91.1 91.8 92.0 89.3 90.6
RTN[9]* 88.1 95.5 95.2 93.7 94.2 96.9

ATI 86.5 92.8 88.7 93.8 89.6 93.6
ATI-λ 87.1 90.6 90.7 93.4 85.4 93.4

D→A D→C D→W W→A W→C W→D AVG
LSVM 79.4 70.2 97.9 80.0 72.7 100.0 84.0

CORAL [12] 87.3 77.5 99.3 85.2 76.1 100.0 86.2
BP [3] 84.0 74.9 97.8 86.9 77.3 100.0 88.2

DDC [16]* 89.0 79.2 98.1 84.9 73.4 100.0 87.1
DAN [8]* 90.0 80.3 98.5 92.1 81.2 100.0 90.1
RTN[9]* 93.8 84.6 99.2 95.5 86.6 100.0 93.4

ATI 93.4 85.9 98.9 93.6 86.3 100.0 91.9
ATI-λ 93.6 85.8 99.3 93.6 86.1 100.0 91.8

Table 4: Classification accuracies on the unsupervised Of-
fice+Caltech dataset [6] with 10 shared classes and 12 do-
main shifts using deep features. We take all source samples
on a single run [5]. ∗ Numbers are taken from [9].

We also test the performance of our method with the ex-
tended version of the Office evaluation set [6], including an
additional dataset: Caltech (C). This setup allows for a to-
tal of 12 domain shifts, but reduces the amount of shared
classes to only 10. As shown in Table 4, our method ob-
tains very competitive results, outperforming in overall the
generic domain adaptation method [12] and 3 out of 4 CNN-
based methods.

Dense Testbed for Cross-Dataset Analysis

We also present an evaluation on the Dense dataset of the
Testbed for Cross-Dataset Analysis [13], using the precom-
puted DeCaF features that they provide, for a total of 40
shared classes in 12 domain shifts from 4 popular datasets:
Bing (B), Caltech (C), ImageNet (I) and Sun (S). Following
the protocol described in [13], we take 50 source samples
per class for training and we test on 30 target images per
class for all datasets, except Sun, where we take 20 samples
per class. Reported results in Table 5 show that we outper-
form all generic domain adaptation methods, being ATI-λ
the best reporting method.

B→C B→I B→S C→B C→I C→S
LSVM 63.8±2.2 57.4±0.7 20.2±1.0 38.3±0.8 62.9±0.9 21.7±1.6

TCA [10] 53.8±1.3 49.1±1.1 17.1±1.1 35.6±1.8 59.2±0.8 18.9±1.2
gfk [6] 63.4±1.8 57.2±1.1 20.6±1.3 38.3±0.9 62.9±1.2 21.7±1.4
SA [2] 63.0±1.9 57.1±1.4 20.2±1.4 38.3±0.9 62.8±1.0 21.5±1.2

CORAL [12] 63.9±2.1 57.8±0.8 20.4±2.0 38.3±0.8 63.4±0.9 22.5±1.2

ATI 69.1±1.3 62.4±1.9 23.4±1.1 39.0±1.4 66.9±1.2 25.2±0.9
ATI-λ 69.4±1.4 62.9±1.3 23.6±1.0 39.0±1.4 66.9±1.1 25.3±0.9

I→B I→C I→S S→B S→C S→I AVG
LSVM 39.3±1.4 70.8±1.5 24.6±1.8 16.6±1.0 26.1±2.0 26.3±0.7 39.0

TCA [10] 36.4±1.2 66.3±2.3 22.2±1.4 13.8±1.4 23.2±1.5 23.2±1.5 34.9
gfk [6] 38.8±1.3 70.9±1.1 24.4±1.4 16.3±0.9 26.7±1.8 26.1±1.0 38.9
SA [2] 39.0±1.3 71.1±1.3 24.2±1.4 16.0±0.9 26.8±1.9 26.4±1.1 38.9

CORAL [12] 39.0±1.2 71.2±1.3 24.9±1.6 16.8±1.0 27.4±2.2 27.7±0.5 39.4

ATI 39.7±1.8 74.4±1.6 25.9±2.1 18.3±1.1 37.1±3.2 35.0±1.0 42.8
ATI-λ 39.8±1.8 74.8±1.5 25.8±2.0 18.7±0.7 37.4±2.9 34.8±0.8 43.2

Table 5: Testbed dataset [14] with 40 common classes for a
total of 12 domain shifts.

Sentiment Analysis

B→E D→B E→K K→D AVG.
LSVM 75.5±1.6 78.2±2.5 83.1±1.8 73.3±1.8 77.5

TCA [10] 76.6±2.2 78.5±1.6 83.8±1.5 75.0±1.4 78.5
gfk [6] 77.0±2.0 79.2±1.8 83.7±1.7 73.7±1.9 78.4
SA [2] 75.9±1.9 78.4±2.1 83.0±1.7 72.1±1.9 77.4
CORAL [12] 76.2±1.7 78.4±2.0 83.1±2.0 74.2±3.0 78.0

ATI 79.9±2.0 79.2±1.9 83.7±2.1 75.6±1.9 79.6
ATI-λ 79.6±1.4 79.0±1.8 83.6±2.1 74.4±1.7 79.2

Table 6: Accuracies of 4 domain shifts on the Sentiment
dataset [1] using the bag-of-words features and the protocol
from [4].

To show the behaviour of our method with a different
type of feature descriptor, we also present an evaluation on
the Sentiment analysis dataset [1]. This dataset gathers re-
views from Amazon for four products: books (B), DVDs
(D), electronics (E) and kitchen appliances (K). Each do-
main contains 1000 reviews labelled as positive and another
set of 1000 reviews as negative. We use the data provided
by [4], which extracts bag-of-words features from the 400
words with the largest mutual information across domains.
We report the mean accuracy of experiments on 20 random
splits, where at each run the training set contains 1600 sam-
ples and the test set 400 samples. Table 6 shows how our
method obtains the best overall results. In this case, ATI-λ
gets slightly worse accuracies than the standard ATI without
outlier rejection, probably due to the nature of the dataset
with only two class labels.

References
[1] J. Blitzer, M. Dredze, and F. Pereira. Biographies, bol-

lywood, boom-boxes and blenders: Domain adaptation for
sentiment classification. In Association for Computational
Linguistics, 2007.



[2] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Un-
supervised visual domain adaptation using subspace align-
ment. In IEEE International Conference on Computer Vi-
sion, pages 2960–2967. IEEE, 2013.

[3] Y. Ganin and V. Lempitsky. Unsupervised domain adap-
tation by backpropagation. In International Conference on
Machine Learning, pages 1180–1189, 2015.

[4] B. Gong, K. Grauman, and F. Sha. Connecting the dots with
landmarks: Discriminatively learning domain-invariant fea-
tures for unsupervised domain adaptation. In International
Conference on Machine Learning, pages 222–230, 2013.

[5] B. Gong, K. Grauman, and F. Sha. Reshaping visual datasets
for domain adaptation. In Advances in Neural Information
Processing Systems, pages 1286–1294, 2013.

[6] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow
kernel for unsupervised domain adaptation. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2066–2073, 2012.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[8] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transfer-
able features with deep adaptation networks. In International
Conference on Machine Learning, pages 97–105, 2015.

[9] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsuper-
vised domain adaptation with residual transfer networks. In
Advances in Neural Information Processing Systems, pages
136–144, 2016.

[10] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain
adaptation via transfer component analysis. In International
Jont Conference on Artifical Intelligence, IJCAI’09, pages
1187–1192, San Francisco, CA, USA, 2009. Morgan Kauf-
mann Publishers Inc.

[11] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-
sual category models to new domains. In IEEE European
Conference on Computer Vision, pages 213–226, 2010.

[12] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy
domain adaptation. In AAAI Conference on Artificial Intelli-
gence, 2015.

[13] T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars. A
deeper look at dataset bias. CoRR, abs/1505.01257, 2015.

[14] T. Tommasi and T. Tuytelaars. A testbed for cross-dataset
analysis. In IEEE European Conference on Computer Vision
Task-CV Workshop, pages 18–31, 2014.

[15] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultane-
ous deep transfer across domains and tasks. In IEEE Inter-
national Conference on Computer Vision, pages 4068–4076,
2015.

[16] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell.
Deep domain confusion: Maximizing for domain invariance.
CoRR, abs/1412.3474, 2014.


