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Abstract

Video-based person re-identification (re-ID) is an important
technique in visual surveillance systems which aims to match
video snippets of people captured by different cameras. Ex-
isting methods are mostly based on convolutional neural net-
works (CNNs), whose building blocks either process local
neighbor pixels at a time, or, when 3D convolutions are used
to model temporal information, suffer from the misalign-
ment problem caused by person movement. In this paper, we
propose to overcome the limitations of normal convolutions
with a human-oriented graph method. Specifically, features
located at person joint keypoints are extracted and connected
as a spatial-temporal graph. These keypoint features are then
updated by message passing from their connected nodes with
a graph convolutional network (GCN). During training, the
GCN can be attached to any CNN-based person re-ID model
to assist representation learning on feature maps, whilst it
can be dropped after training for better inference speed. Our
method brings significant improvements over the CNN-based
baseline model on the MARS dataset with generated person
keypoints and a newly annotated dataset: PoseTrackReID. It
also defines a new state-of-the-art method in terms of top-1
accuracy and mean average precision in comparison to prior
works.1

Introduction
Visual surveillance systems play a vital role in modern soci-
ety to ensure public safety. The massive data collected by the
systems raises the need for automatic visual understanding
techniques such as person re-identification (re-ID). Person
re-ID aims to associate the same person across cameras with
non-overlapping views, which is usually achieved by calcu-
lating the similarities between the representations of images.
Compared to images, video sequences provide much richer
information which is beneficial to address visual ambigui-
ties. Therefore, video-based person re-ID emerged recently
as a parallel research field to image-based person re-ID.
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1The new dataset and code will be released at https://
github.com/DeanChan/KeypointMessagePassing.
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Figure 1: Problems using 2D/3D convolution: (a) spatially
local and (b) temporal misalignment; We propose (c) key-
point message passing, where keypoint features on frame
t (marked with white circle) are updated with information
from connected nodes (red arrow) by graph convolution,
which is not bounded by the fixed shape and location of
normal convolutions. The complete spatial-temporal graph
structure is shown in Fig. 3.

The central problem of learning discriminative video rep-
resentations is how to exploit both spatial and temporal in-
formation. Most existing solutions propose to capture spatial
and temporal information separately, i.e. using a 2D con-
volutional neural network (CNN) for spatial representation
learning, while handling temporal information by aggregat-
ing the high-level outputs of CNNs with pooling (Zheng
et al. 2016a), recurrent neural networks (Chung, Tahboub,
and Delp 2017; McLaughlin, Del Rincon, and Miller 2016;
Chen et al. 2018; Xu et al. 2017; Zhou et al. 2017) or tem-
poral attention (Fu et al. 2019; Zhou et al. 2017; Xu et al.
2017; Liu, Yan, and Ouyang 2017; Li et al. 2018). Other
works (Liu et al. 2019b,a; Li, Zhang, and Huang 2019) learn
concurrent spatial-temporal representations with 3D convo-
lutions. The core operation of both types of methods is con-
volution, which only processes information at a small local
range, especially when it is located at shallow hierarchies
of a network. Meanwhile, 3D convolution layers also have
the misalignment problem, i.e. the same position in adja-
cent frames may belong to different body parts due to person
movement, such that the appearance representations learned
by 3D convolution are polluted with the wrong body part
or background. The spatially local and temporally misalign-
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ment problems are shown in Fig. 1 (a) and (b).
In this paper, we propose to overcome the limitations of

convolutions in video-based person re-ID with the help of
person pose estimation and graph convolution. Since hu-
man body keypoints are representative for distinct shapes
of different people, we construct the graph based on key-
points. Specifically, the features located at person joint key-
points are cropped from the CNN feature maps, which are
then used as the node features for constructing a spatial-
temporal graph. The graph-structured data is then processed
with graph convolutions, which is not bounded by small-
scale, rectangular-shaped kernels of normal convolution. A
brief illustration is shown in Fig. 1 (c). We can see that fea-
tures located at, e.g. one’s left shoulder, interact with fea-
tures from the right shoulder, left elbow and left hip simulta-
neously, which is otherwise hard to reach for a single convo-
lutional layer due to the large spatial distances. Meanwhile,
the left shoulder features at video frame t also receive in-
formation from the same location at adjacent frames with-
out misalignment problems. The same process happens to
all other keypoints on the human body, enriching the lo-
cal keypoint features with non-local, temporal-aligned and
human-oriented information. Since the core idea is based
on the message passing mechanism (Gilmer et al. 2017) of
graph convolutions, we name our method keypoint message
passing.

When we attach a graph convolutional network (GCN) to
a CNN, it comes with significant computational cost and ex-
tra memory consumption, especially when the graph scale is
large and the GCN is deep. To this end, we propose a flexi-
ble design which enables graph convolutions during training
but does not require the graph during inference. An illustra-
tion is shown in Fig. 2. The GCN serves as a parallel branch
along side the CNN, which functions as a training guide.
Supervision signals with spatial-temporal information flows
back from the GCN to the CNN by back-propagation. There-
fore, each keypoint location on the CNN feature map re-
ceives feedback from a more diverse set of spatial-temporal
locations, especially for the shallow layers which have small
receptive fields. Once the model is trained, the whole GCN
branch, keypoints and graphs can be dropped, leaving no ex-
tra computational burden other than the CNN branch. More-
over, the choice of the CNN is not limited, i.e. our design is
generalizable to any CNN-based re-ID model. We name our
method ‘KMPNet’.

In summary, our contribution is three-fold:
• With the help of spatial-temporal guidance provided by

person joint keypoints and graph convolutions, we pro-
pose a general method to assist CNN-based re-ID model
training, which overcomes the limitation of normal con-
volutions without extra computational burden during in-
ference.

• We present PoseTrackReID, a new dataset for video-
based re-ID featuring both person ID and keypoint an-
notations.

• Extensive experiments demonstrate that our model sig-
nificantly improves the baseline, achieving results on par
with or better than the current state-of-the-art models.

Related Work
Image-based Person Re-Identification. Image-based per-
son re-ID models usually serve as good baselines for video-
based re-ID methods. Early re-ID models mainly focus on
designing discriminative hand-crafted features (Wang et al.
2007; Farenzena et al. 2010; Zhao, Ouyang, and Wang 2013;
Liao et al. 2015) and distance metrics (Kostinger et al. 2012;
Li et al. 2015; Zhang, Xiang, and Gong 2016). Nowadays,
designing re-ID models based on CNNs has become main
stream. These methods typically formulate re-ID as a clas-
sification (Xiao et al. 2016; Zheng et al. 2016b; Fan et al.
2018; Xiang et al. 2018) or ranking (Yi et al. 2014; Li et al.
2014; Ahmed, Jones, and Marks 2015; Varior et al. 2016;
Liu et al. 2017; Xu et al. 2018) problem at training time, and
use the optimized backbone network as a feature extractor
during inference. Instead of extracting global features with
global average pooling, recent methods (Sun et al. 2018; Wei
et al. 2017; Zhao et al. 2017; Yao et al. 2019) propose to di-
vide the final CNN feature maps into several parts and use
average pooling separately. For example, PCB (Sun et al.
2018) partitions the feature maps into horizontal stripes and
then concatenates the pooled stripe features to generate the
final features, which contain richer spatial information and
thus achieve better performance than the simple global fea-
tures. In our ablation studies, we also choose PCB as the
base CNN of the visual branch, whereas it is worth to notice
that any CNN based model is a candidate.
Video-based Person Re-Identification. The most direct
way for video-based re-ID is to lift image-based re-ID meth-
ods by aggregating multi-frame features via different op-
erations, such as mean/max pooling (Zheng et al. 2016a),
recurrent neural networks (RNNs) (Chung, Tahboub, and
Delp 2017; Chen et al. 2018; Xu et al. 2017; Zhou et al.
2017) and temporal attention (Fu et al. 2019; Zhou et al.
2017; Xu et al. 2017; Liu, Yan, and Ouyang 2017; Li et al.
2018). Another strategy is to capture the spatial and tem-
poral information simultaneously by 3D convolution (Liu
et al. 2019b,a; Li, Zhang, and Huang 2019). Despite their fa-
vorable performance, 3D convolutions usually require more
computational and memory resources, which limits their po-
tential for real-world applications. The graph convolution
in our method shares similar concept with 3D convolution
on concurrent spatial-temporal information modeling. How-
ever, our method differs from 3D CNNs in that the input
data has a non-local structure, whereas the input to 3D con-
volutions must be a rectangular-shaped local range of pixels.
Besides, our method does not suffer from the temporal mis-
alignment problem as 3D convolutions do, since the cross-
frame features are always extracted at the same location on
the human body. Additionally, all the graph convolution op-
erations are only performed at training time, thus no extra
computational costs are required during inference.
Pose-assisted Person Re-Identification. Benefiting from
recent advances on pose estimation (Rafi et al. 2020; Cao
et al. 2019; Xiao, Wu, and Wei 2018; Sun et al. 2019), per-
son keypoints have been utilized to facilitate person re-ID
models. Some works (Ge et al. 2018; Liu et al. 2018) fo-
cus on generating person images with keypoints which are
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Figure 2: Overall pipeline for our method. The visual branch is a base CNN which is a typical 5-stage model and takes
in a video with T frames as input. The graphical branch is a GCN divided into 4 parts. Given the keypoint locations (either
annotated or generated with a pose estimation model), we extract features according to the locations on the first CNN stage and
use them as the inputs to the GCN. At the end of each stage, keypoint features are fused with the intermediate representations
from GCN with an element-wise sum. The fused features serve as the new inputs to the subsequent GCN layers. The detailed
graph topology is shown in Fig. 3. Both the CNN and GCN are supervised with cross-entropy loss during training. Note, that
the GCN branch including keypoint estimation can be dropped during inference.

later used as extra training data. Others propose to use per-
son keypoints as a spatial cue for aligning body parts (Suh
et al. 2018; Su et al. 2017; Wu et al. 2020) or highlight-
ing non-occluded regions (Miao et al. 2019). For instance,
Su et al. (2017) crop out person parts from the input im-
ages according to provided keypoints and re-assemble them
into a pose-normalized synthetic image. Miao et al. (2019)
use the keypoint heatmaps as spatial attention which is then
multiplied with the feature maps element-wise before aver-
age pooling. In our method, person keypoints also play a
key role. However, they are introduced with a different mo-
tivation, i.e. refining CNN features by capturing non-local
human-oriented information within video frames as well as
temporal information between frames.

Graph Convolutional Networks. The growing need for
processing non-Euclidean data has motivated research on
graph convolutional networks (Kipf and Welling 2016;
Chen, Ma, and Xiao 2018; Hamilton, Ying, and Leskovec
2017; Huang et al. 2018; Li et al. 2020). Some computer
vision researchers also take advantage of GCNs on tasks
such as action recognition (Yan, Xiong, and Lin 2018),
video classification (Wang and Gupta 2018) and gait recog-
nition (Li, Zhao, and Ma 2020). Meanwhile, some person
re-ID works (Wu et al. 2020; Shen et al. 2018; Yang et al.
2020; Yan et al. 2020) also exploit GCNs for unstructured
relationship learning. Shen et al. (2018) builds a graph based
on probe-gallery image pairs and utilize a GCN for better
similarity estimation. Shen et al. (2018),Yang et al. (2020)
and Yan et al. (2020) propose to model the relationship of
intra-frame spatial parts and inter-frame temporal cues for a
video. Our method differs from these works in the follow-
ing three aspects. Firstly, instead of using horizontal parts
as the graph node, we use person keypoints which provide
better localization on the human body, and thus avoid the

misalignment problem naturally. Secondly, the graph con-
volution for spatial-temporal refinement is applied to all lev-
els of CNN features, whereas Shen et al. (2018),Yang et al.
(2020) and Yan et al. (2020) only use a GCN for high-level
features. Thirdly, the graphical branch with graph convolu-
tions is only used to assist CNN feature training. While dur-
ing inference, it can be dropped entirely to save computation
and memory resources.

Methodology
The Framework
A brief overview of our model is shown in Fig. 2. Our
model is mainly composed of two branches, i.e. the vi-
sual branch and the graphical branch. The visual branch
is a base CNN model, as a canonical choice for person re-
identification. The input to the visual branch is a video with
T frames, while each frame is processed as an individual im-
age. The graphical branch is a GCN model, which is man-
ually partitioned into 4 stages to match the hierarchies of
the base CNN. We extract the person keypoint features with
an RoIAlign (He et al. 2017) operation from the last layer of
each CNN stage, which are further constructed into a spatial-
temporal graph and serve as input to the corresponding GCN
stages for long-range interaction. The keypoint locations are
manually annotated or generated with an off-the-shelf pose
estimation model. Specifically, keypoint features from CNN
stage 1 are used as the initial input to GCN part 1. After pass-
ing through several graph convolution layers, the outputs
of GCN part 1 are then fused with keypoint features from
CNN stage 2 with an element-wise sum. The “convolution-
fusion” paradigm is repeated until the end of both branches.
During training, both of the branches are supervised with
cross-entropy losses. Gradients from the graphical branch
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Figure 3: Spatial-temporal graph for a sequence of per-
son joints. Figures from left to right denote spatial edges
ES (blue), temporal edges ET (red) and all edges E respec-
tively. We use E in our KMP method unless specified other-
wise.

flow back to the visual branch, which enhances the features
located at person joints with long-range information. Dur-
ing inference, we only use the enhanced visual features pro-
duced by the CNN for person matching. At this time, the
whole GCN branch can be dropped to reduce the computa-
tional burden.

Graph Formulation
Following (Yan, Xiong, and Lin 2018) and (Li, Zhao, and
Ma 2020), we represent a sequence of person joints with
a spatial-temporal graph G = (V,E). The node set V =
{vti|t = 1, . . . , T, i = 1, . . . , N} includes all the joints
in this sequence, where T is the number of frames and
N is the number of keypoints in each frame. The edge
set E is composed of two subsets, namely spatial set ES

and temporal set ET . The spatial edges, denoted as ES =
{(vti, vtj)|(i, j) ∈ H, t = 1, . . . , T}, is a direct repre-
sentation of natural human topology H in each frame, as
is shown by the blue lines in Fig. 3. The temporal set
ET = {(vti, v(t+1)i), |t = 1, . . . , T, i = 1, . . . , N} con-
sists of connections of the same joints between frame t and
t+ 1. It is illustrated as the red lines in Fig. 3.

There are different options for features of each graph
node. In (Yan, Xiong, and Lin 2018) and (Li, Zhao, and
Ma 2020), the keypoint coordinates are used as node fea-
tures in order to capture the action or gait information. Dif-
ferently, we use visual features cropped from CNN feature
maps as graph node feature, since our motivation is to cap-
ture the non-local, temporal-aligned relationships between
different locations, rather than modeling movement infor-
mation. Specifically, the feature for node v at layer l is rep-
resented as h

(l)
v . It has three variants depending on which

layer it is processed. For the first layer of GCN p1, h(l)
v is

the plain keypoint feature cropped from the feature maps of
CNN stage 1. For the hidden layers inside each GCN part,
h
(l)
v is the latent outputs from layer l− 1. The input features

for the first layers of GCN p2 to GCN p4 are linear combi-
nations of the latent outputs and CNN features:

h(l)
v ←WT

down(W
T
uph

(l)
v + f(i, j)), (1)

where f denotes the CNN feature map and i, j are the spa-
tial coordinates of node v; Wup and Wdown are weights of
fully-connected layers to match the dimensions of h(l)

v and

f(i, j).

Keypoint Message Passing
Once the graph topology and node features are defined,
graph convolutions could be applied to update the node fea-
tures. We adopt the improved version of graph convolution
block from (Li et al. 2020), which takes advantage of gener-
alized message aggregation, modified skip connections and
a novel normalization method. The block consists of a se-
ries of operations, including normalization, non-linear acti-
vation, dropout, graph convolution and residual addition. For
simplicity, we only introduce the graph convolution opera-
tion since the message passing between different nodes only
happens at this step.

For GCN layer l, the graph convolution is mainly com-
posed of three actions, namely message construction ρ, mes-
sage aggregation ζ and vertex update φ. They are defined as
follows respectively:

m(l)
vu = ρ(l)(h(l)

v ,h(l)
u ), u ∈ N (v) (2)

m(l)
v = ζ(l)({m(l)

vu|u ∈ N (v)}) (3)

h(l+1)
v = φ(l)(h(l)

v ,m(l)
v ) (4)

where N (v) denotes the neighbour nodes of vertex v; m(l)
vu

indicates the message passed from node u to v; m(l)
v is the

aggregated messages for node v. Since we do not use edge
features here, the message construction function ρ(l)(·) is
simply defined as:

m(l)
vu = ρ(l)(h(l)

v ,h(l)
u ) = ReLU(h(l)

u ) + ε (5)
where ε is a small constant introduced for numerical stabil-
ity. Eqn. 5 means the rectified node features are directly used
as neighbour messages. For the message aggregation func-
tion ζ(l)(·), we choose the form of softmax with a learnable
temperature τ :

m(l)
v =

∑
u∈N (v)

e
1
τm

(l)
vu∑

i∈N (v) e
1
τm

(l)
vi

·m(l)
vu (6)

which can be regarded as a weighted summation of all the
neighbour messages. The aggregated message m

(l)
v is then

used to update the node feature of v with a function φ(l)(·):
h(l+1)
v = φ(l)(h(l)

v ,m(l)
v ) = MLP(h(l)

v +m(l)
v ) (7)

where MLP(·) is a multi-layer perceptron with 2 fully-
connected layers.

At the end of the GCN, the node features are pooled and
mapped into discriminative embeddings. An illustration is
shown in Fig. 4(b). We adopt the pooling operation in (Li,
Zhao, and Ma 2020), which combines multiple partition pat-
terns and uses average pooling within each part. Specifically,
there are three types of discriminative embeddings, namely
1) average feature of the whole body, 2) the upper and lower
body separately averaged features and 3) averaged pair fea-
tures of (left arm, right leg) and (right arm, left leg). All the
features are then mapped with a fully connected layer with-
out weight sharing. In total, we obtain 5 discriminative em-
beddings, denoted as {xi

g|i = 1, . . . , 5}t on frame t, which
are further supervised by training objectives.
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Figure 4: Pooling and classification for visual and graphi-
cal branches. (a) Spatial pooling on CNN feature maps. (b)
Graph pooling (Li, Zhao, and Ma 2020) on node features.
Nodes wrapped with the same color are average pooled into
a single embedding.

Training & Inference
For a video sequence with T frames, a forward pass of
our model generates two sets of embeddings from the vi-
sual branch and the graphical branch respectively. The CNN
embeddings from the visual branch is denoted as {xi

c|i =
1, . . . , k}t, t = 1, . . . , T , where k is a hyper-parameter de-
pending on the CNN design. For example, k = 1 for an IDE
model (Zheng, Zheng, and Yang 2017) since global average
pooling is applied on the final feature map, producing one
single embedding for a frame. For a PCB model (Sun et al.
2018), k equals the number of horizontal stripes which is
typically set to 4 or 6. Similarly, the output of the graphi-
cal branch is the GCN embeddings {xi

g|i = 1, . . . , 5}t, t =
1, . . . , T . During training, all embeddings are input into k+5
classifiers respectively. Each classifier is composed of a fully
connected layer and a softmax activation, which is super-
vised by a cross-entropy loss.

During inference, the embeddings on each frame are con-
catenated and then averaged over the temporal dimension,
thus the CNN and GCN embeddings for the whole sequence
is denoted as xc and xg respectively. We find through exper-
iments that xc shows better performance than xg . Therefore,
we report the re-ID results using only xc unless mentioned
otherwise.
Discussion: Why discard GCN during inference? Similar
to dropping the discriminator in GANs and classifier layer in
re-ID models, we also drop some part of our model during
inference. In our case, the entire graphical branch is dropped
since we only use the CNN embedding xc. The reason why
we discard the graphical branch is twofold: 1) The forward
pass of CNN does not rely on any information provided by
the GCN. 2) The CNN embedding xc performs better than
GCN embedding xg . It is worth to notice that although GCN
is not used, it benefits CNN training via the back-propagated

Figure 5: Sample tracklets in MARS (left) and Pose-
TrackReID (right). Person keypoints on MARS are gen-
erated by an off-the-shelf pose estimator (Rafi et al. 2020),
whilst on PoseTrackReID the keypoints are manually anno-
tated.

gradients. In this way, xc is enriched with long-range seman-
tic dependencies and aligned temporal information, which
is the fundamental advantage brought by keypoint message
passing.

Experiments
In this section, we first introduce the datasets, evaluation
protocols and implementation details. Then we compare our
method to state-of-the-art methods, followed by extensive
ablation studies. More analytical experiments are included
in our supplementary material.

Datasets and Evaluation Protocol
MARS (Zheng et al. 2016a) is a large-scale benchmark
dataset for video-based person re-ID. All the videos are col-
lected with 6 stationary cameras on a university campus,
from which a DPM detector (Felzenszwalb et al. 2009) and
GMMCP tracker (Dehghan, Modiri Assari, and Shah 2015)
are used to crop out the person regions. The training set con-
sists of 8, 298 tracklets of 625 identities, while the testing
set includes 1, 980 tracklets of 626 identities for query and
6, 082 tracklets of 620 identities for gallery. The person key-
points are generated with a top-down pose estimation model
proposed in (Rafi et al. 2020) on each frame. Some frames
with visualized poses are shown in Fig. 5.

PoseTrackReID is a new dataset proposed in this work
to facilitate more comprehensive experiments for video-
based person re-ID. It is a cropped subset of the PoseTrack
2018 dataset (Andriluka et al. 2018) which is originally pro-
posed for multi-person pose estimation and articulated track-
ing. The videos are captured in various scenes with large
amounts of pose, appearance and scale variation. They also
contain challenging scenes with severe body part occlusion
and truncation. The person keypoints are manually anno-
tated at an interval of 4 frames at the beginning and at the end
of a sequence, whereas the center of a sequence contains 30
consecutive manually annotated keypoints. Based on Pose-
Track 2018, we construct PoseTrackReID by adding addi-
tional annotations of person bounding box and global per-
son ID. The person regions are then cropped out for video-
based person re-ID. The training set of PoseTrackReID is
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Method top-1 mAP
CNN + XQDA (Zheng et al. 2016a) 65.3 47.6
SeeForest (Zhou et al. 2017) 70.6 50.7
DuATM (Si et al. 2018) 81.2 67.7
Snippet (Chen et al. 2018) 86.3 76.1
ADFD (Zhao et al. 2019) 87.0 78.2
COSAM (Subramaniam et al. 2019) 84.9 79.9
GLTR (Li et al. 2019) 87.0 78.5
TCLNet (Hou et al. 2020) 88.8 83.0
KMPNet (ResNet-50) 86.7 84.4
ASTPN (Xu et al. 2017) 44.0 -
VRSTC (Hou et al. 2019) 88.5 82.3
MG-RAFA (Zhang et al. 2020) 88.8 85.9
STGCN (Yang et al. 2020) 90.0 83.7
MGH (Yan et al. 2020) 90.0 85.8
KMPNet (PCB) 89.7 86.5
KMPNet (MGH) 92.0 86.6

Table 1: Performance comparison with state-of-the-art
video-based person re-ID methods on MARS. ResNet-50,
PCB and MGH in the brackets denote the base CNN of our
visual branch. Methods in the upper block use global aver-
age pooling while the ones in the lower block use part-based
pooling. Best performances in each block are marked bold,
second best in blue.

gathered from the training set of PoseTrack 2018, including
7, 725 tracklets of 5, 350 identities. The query set consists
of 847 tracklets of 830 identities, while the gallery set in-
cludes 1, 965 tracklets of 1, 696 identities. Both the query
and gallery sets are collected from the validation set of Pose-
Track 2018. Some example frames are shown in Fig. 5.
Evaluation Protocols. We use Cumulative Matching Char-
acteristics (CMC) and mean Average Precision (mAP) as
the evaluation metrics, which is the standard on the MARS
benchmark. On PoseTrackReID, we follow the rules of
MARS by using CMC and mAP as well.

Implementation
We choose ResNet-50 (He et al. 2016) as the base CNN for
the visual branch. We adopt the 28-layer GCN model in (Li
et al. 2020) and remove the first graph convolution layer to
match the visual branch. We then partition the remaining 27
layers in proportion to the design of ResNet-50. It is also
straightforward to replace the ResNet-50 with other back-
bones. The dimension for the latent node features of GCN
is set to 64. Please refer to the supplementary material for
more details.

Comparison to the state-of-the-art
In this section, we compare our KMPNet to state-of-the-art
methods on both MARS and PoseTrackReID. We choose
three representative base CNNs as the visual branch of our
KMPNet, namely ResNet-50 (He et al. 2016), PCB (Sun
et al. 2018) and MGH (Yan et al. 2020). The results on

Method top-1 mAP
ResNet-50 (He et al. 2016) 75.1 79.4
PCB (Sun et al. 2018) 77.9 81.5
MGH (Yan et al. 2020) 82.7 84.2

KMPNet (ResNet-50) 78.7 82.7
KMPNet (PCB) 79.2 82.7
KMPNet (MGH) 83.3 84.9

Table 2: Performance comparison on PoseTrackReID.

MARS are summarized in Tab. 1. For clear comparison,
we group the methods in the table according to the pooling
method used at the top convolutional layer. Methods in the
upper block adopt global average pooling, while the lower
block features part-based pooling.

Compared to the most recent methods, including MG-
RAFA (Zhang et al. 2020), STGCN (Yang et al. 2020),
MGH (Yan et al. 2020) and TCLNet (Hou et al. 2020), our
KMPNet with a simple PCB (Sun et al. 2018) as the visual
branch achieves higher mAP and comparable top-1 accu-
racy. Apart from the backbone CNN, all these methods re-
quire some extra computations such as spatial-temporal at-
tention (Zhang et al. 2020), recursive feature erasing (Hou
et al. 2020) and graph convolution (Yang et al. 2020; Yan
et al. 2020). In contrast, our method only requires graph
convolution at the training stage. During inference, no other
computations are needed other than the backbone CNN,
which makes our method computationally efficient.

Moreover, our method could also be used to boost the per-
formance of other models by replacing the PCB baseline in
the visual branch. For example, applying our keypoint mes-
sage passing method to the MGH (Yan et al. 2020) model2
improves the top-1 accuracy and mAP by 2.0 and 0.8 pp. re-
spectively, setting a new state-of-the-art performance. This
improvement also indicates that our method has good gen-
eralization ability w.r.t. different visual baselines.

We also show the re-ID results on PoseTrackReID in
Tab. 2. The re-implemented CNNs are grouped in the up-
per block, while the corresponding GCN enhancements are
listed in the lower block. We can see from Tab. 2 that for all
the three visual baselines, KMPNet consistently improves
their top-1 accuracies and mAPs. Compared to MARS,
PoseTrackReID is more diverse with various background
and human poses. The fact that KMPNet also excels on
PoseTrackReID suggests that our method is also generaliz-
able to different scenes.

Ablation Study
In this subsection, we conduct analytical experiments on
both MARS and PoseTrackReID. For simplicity, we focus
on one specific design which uses PCB (Sun et al. 2018) as
the visual branch of our KMPNet. The corresponding results
and conclusions also apply to other base CNNs.
Analysis on the spatial temporal relationships. Compared

2During training, the visual branch is initialized with the pub-
lished model weight of MGH.
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Model
Variants

MARS PoseTrackReID
top-1 mAP top-1 mAP

PCB baseline 85.3 84.6 77.9 81.5
+ fine-tune 84.7 84.6 77.2 81.4

+ spatial 88.6 85.5 78.9 82.1
+ temporal 88.7 85.3 77.9 81.8
+ both 89.7 86.5 79.2 82.7

Table 3: Ablation study on spatial and temporal connections.

Embedding
MARS PoseTrackReID

top-1 mAP top-1 mAP
xc 89.7 86.5 79.2 82.7
xg 61.7 57.3 48.3 51.6

Table 4: Performance for visual/graphical embeddings.

to the PCB baseline, our model mainly benefits from two as-
pects, i.e. the non-local spatial dependencies and the cross-
frame temporal information. In order to better understand
the contribution of the two components, we conduct abla-
tion studies on the spatial temporal structures of the graph.
Starting from the PCB baseline, which is basically the vi-
sual branch of our KMPNet, we add the graphical branch
with different graph structures, namely spatial-only graph,
temporal-only graph and spatial-temporal graph. The three
variants of graph structure are demonstrated in Fig. 3.

The comparison is shown in the lower block of Tab. 3.
We can see that adding spatial information with our method
improves the performance of the PCB baseline by 3.3 and
0.9 pp. w.r.t. to top-1 and mAP on MARS, which means
that adding non-local information during training is ben-
eficial for re-ID feature learning. Meanwhile, the efficacy
of temporal information is also clear: increasing top-1 and
mAP by 3.4 and 0.7 pp. Similarly, the experiment results
on PoseTrackReID also reveal the same conclusion. Finally,
our final KMPNet featuring both spatial and temporal graph
achieves the best performance over either of them alone.

On the other hand, we also show in the upper block of
Tab. 3 a control experiment where the model is trained
longer with the same learning rate and epochs as our KMP-
Net but without the assistance of the graphical branch. The
re-ID accuracy of this model was not increased, which sug-
gests that the performance gain is not due to the extra fine-
tuning stage but the message passing via graphs.

Based on the above results, we could draw the conclu-
sion that the strategy of guiding CNN training with spatial-
temporal information and graph convolution is effective.
Embedding choices. The two branches of our KMPNet pro-
duce two sets of embeddings respectively, i.e. the CNN and
GCN embeddings xc and xg . In practice, we only use xc

for calculating the similarity between probe-gallery pairs.
What if we also take xg into consideration? How would it
affect the re-ID performance? The answer to this question
lies in Tab. 4, from which we can see that neither the top-1

KMPNet

PCB

Figure 6: Feature map visualizations for our KMPNet and
the PCB baseline. Warmer color denotes stronger activation.

accuracy nor the mAP of xg are comparable to that of xc.
The performance degeneration of xg suggests that keypoint
features processed by graph convolutions are not as expres-
sive as CNN features, since they are just a sampled subset
of CNN feature maps. However, it does not obliterate the
contribution of the GCN since it significantly boosts the per-
formance of the CNN embedding xc, as is shown in Tab. 3.

Based on the analysis above, we decide to use only xc

for matching the query and gallery persons, which makes
it possible to remove the whole graphical branch during in-
ference. Therefore, the computation and memory resources
needed are drastically reduced.
Feature map visualizations. We visualize the feature maps
of some representative samples in Fig. 6. The activation
maps are obtained from the channel-wise max of features
in ‘conv1’. We can see from Fig. 6 that our KMPNet has
stronger activation on the human body region than the base-
line PCB model, despite that they have the same architec-
ture during inference. This is because the graphical branch
in our KMPNet helps to cast stronger feedback signals onto
the keypoint locations on CNN feature maps during training.
As a result, the learned visual branch tends to focus more on
the human body region. Therefore, more discriminative in-
formation could be discovered on human body.

Conclusion
In this paper, we present KMPNet, a spatial-temporal en-
hanced model for video-based person re-identification. A
graphical branch featuring a graph convolutional network
is attached alongside a visual branch, which can be initial-
ized with any CNN-based person re-ID model. In the train-
ing stage, the graphical branch assists the CNN training by
passing spatial and temporal messages on the feature maps,
where spatial messages are passed among joint keypoints on
the human body and temporal messages are passed between
the same keypoints of adjacent video frames. During infer-
ence, the entire graphical branch can be dropped for effi-
ciency, while the visual branch alone shows superior perfor-
mance over the initial CNN model. Extensive experiments
on the MARS and PoseTrackReID dataset demonstrate the
effectiveness of our method.
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