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Abstract. Despite of the success of convolutional neural networks for
semantic image segmentation, CNNs cannot be used for many applica-
tions due to limited computational resources. Even efficient approaches
based on random forests are not efficient enough for real-time perfor-
mance in some cases. In this work, we propose an approach based on
superpixels and label propagation that reduces the runtime of a random
forest approach by factor 192 while increasing the segmentation accuracy.

1 Introduction

Although convolutional neural networks have shown a great success for semantic
image segmentation in the last years [1–3], fast inference can only be achieved
by massive parallelism as offered by modern GPUs. For many applications like
mobile platforms or unmanned aerial vehicles, however, the power consumption
matters and GPUs are often not available. A server-client solution is not always
an option due to latency and limited bandwidth. There is therefore a need for
very efficient approaches that segment images in real-time on single-threaded
architectures.

In this work, we analyze in-depth how design choices affect the accuracy and
runtime of random forests and propose an efficient superpixel-based approach
with label propagation for videos. As illustrated in Figure 1, we use a very effi-
cient quadtree representation for superpixels. The superpixels are then classified
by random forests. For classification, we investigate two methods. For the first
method, we use the empirical class distribution and for the second method we
model the spatial distributions of class labels by Gaussians. For video data, we
propose label propagation to reduce the runtime without substantially decreas-
ing the segmentation accuracy. An additional spatial smoothing even improves
the accuracy.

We evaluate our approach on the CamVid dataset [4]. Compared to a stan-
dard random forest, we reduce the runtime by factor 192 while increasing the
global pixel accuracy by 4 percentage points. A comparison with state-of-the-art
approaches in terms of accuracy shows that the accuracy of our approach is com-
petitive while achieving real-time performance on a single-threaded architecture.
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Fig. 1. For efficient segmentation, we use a quadtree to create superpixels and classify
the superpixels by a random forests.

2 Related Work

A popular approach for semantic segmentation uses a variety of features like
appearance, depth, or edges and classifies each pixel by a classifier like random
forest or boosting [5, 4]. Since pixel-wise classification can be very noisy, condi-
tional random fields have been used to model the spatial relations of pixels and
obtain a smooth segmentation [6, 7]. Conditional random fields, however, are
too expensive for many applications. In [8], a structured random forest has been
proposed that predicts not a single label per pixel but the labels of the entire
neighborhood. Merging the predicted neighborhoods into a single semantic seg-
mentation of an image, however, is also costly. To speed up the segmentation,
the learning and prediction of random forests has been also implemented for
GPUs [9].

In the last years, convolutional neural networks have become very popular
for semantic segmentation [1, 2, 10]. Recent approaches achieve accurate seg-
mentation results even without CRFs [3]. They, however, require GPUs for fast
inference and are too slow for single-threaded architectures. Approaches that
combine random forests and neural networks have been proposed as well [8],
however, at the cost of increasing the runtime compared to random forests.

Instead of segmenting each frame, segmentation labels can also be propa-
gated to the next frame. Grundmann et al. [11] for example use a hierarchical
graph-based algorithm to segment video sequences into spatiotemporal regions.
A more advanced approach [12] proposes a label propagation algorithm using
a variational EM based inference strategy. More recently, a fast label propaga-
tion method based on sparse feature tracking has been proposed [13]. Although
our method can be used in combination with any real-time label propagation
method like [13], we use a very simple approach that propagates the labels of
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quadtree superpixels, which have the same location and similar appearance as
in the preceding frame.

3 Semantic Segmentation

We briefly describe a standard random forests for semantic image segmentation
in Section 3.1. In Section 3.2, we propose a superpixel approach that can be
combined with label propagation in the context of videos.

3.1 Random Forests

Random forests consists of an ensemble of trees [14]. In the context of semantic
image segmentation, each tree infers for an image pixel x the class probability
p(c|x; θt) where c is a semantic class and θt are the parameters of the tree t.
The parameters θt are learned in a suboptimal fashion by sampling from the
training data and the parameter space Θ. A robust estimator is then obtained
by averaging the predictors

p(c|x) =
1

T

∑
t

p(c|x; θt), (1)

where T is the number of trees in the forest. A segmentation of an image can
then be obtained by taking the class with highest probability (1) for each pixel.

Learning the parameters θt for a tree t is straightforward. First, pixels from
the training data are sampled which provide a set of training pairs S = {(x, c)}.
The tree is then constructed recursively, where at each node n a weak classifier
is learned by maximizing the information gain

θn = argmax
θ∈Θ̃

H(Sn)−
∑

i∈{0,1}

|Sn,i|
|Sn|

H(Sn,i)

 . (2)

While Sn denotes the training data arriving at the node n, Θ̃ denotes the set
of sampled parameters and H(S) = −

∑
c p(c;S) log p(c;S) where p(c;S) is the

empirical class distribution in the set S. Each weak classifier fθ(x) with param-
eter θ splits Sn into the two sets Sn,i = {(x, c) ∈ Sn : fθ(x) = i} with i ∈ {0, 1}.
After the best weak classifier θn is determined, Sn,0 and Sn,1 is forwarded to
the left or right child, respectively. The growing of the tree is terminated when
a node becomes pure or Sn < 100 (found using cross-validation). Finally, the
empirical class distribution p(c;Sl) is stored at each leaf node l.

As weak classifiers fθ(x), we use four types that were proposed in [5]:

R(x + x1, w1, h1, k)−R(x + x2, w2, h2, k) ≤ τ (3)

R(x + x1, w1, h1, k) +R(x + x2, w2, h2, k) ≤ τ (4)

|R(x + x1, w1, h1, k)−R(x + x2, w2, h2, k)| ≤ τ (5)

R(x + x1, w1, h1, k) ≤ τ. (6)
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The term R(x + x1, w1, h1, k) denotes the average value of feature channel k
in the rectangle region centered at x + x1 with x1 ∈ [−100, . . . , 100], width
w1 ∈ [1, . . . , 24], and height h1 ∈ [1, . . . , 24]. As feature channels, we use the
CIELab color space and the x- and y-gradients extracted by a Sobel filter. To
generate Θ̃, we randomly sample 500 weak classifiers without τ and for each
sampled weak classifier we sample τ 20 times, i.e., Θ̃ consists of 10,000 randomly
sampled weak classifiers.

3.2 Superpixels with Label Propagation

A single tree as described in Section 3.1 requires on a modern single-threaded
architecture 1500 ms for segmenting an image with 960x720 resolution. This is
insufficient for real-time applications and we therefore propose to classify su-
perpixels. In order to keep the overhead by computing superpixels as small as
possible, we use an efficient quadtree structure. As shown in Figure 1, the re-
gions are not quadratic but have the same aspect ratio as the original image.
Up to depth 3, we divide all cells. For deeper quadtrees, we divide a cell into
four cells if the variance of the intensity, which is in the range of 0 and 255,
within a cell is larger than 49. Instead of classifying each pixel in the image, we
classify the center of each superpixel and assign the predicted class to all pixels
in the superpixel. For training, we sample 1000 superpixels per training image
and assign the class label that occurs most frequently in the superpixel.

While (1) uses the empirical class distribution p(c;Sl) stored in the leaves for
classification, it discards the spatial distribution of the class labels within and
between the superpixels ending in a single leaf. Instead of reducing the pixel-
wise labels of the training data to a single label per superpixel, we model the
spatial distribution by a Gaussian per class. To this end, we use the pixel-wise
annotations of the superpixels ending in a leaf denoted by Sl = {(xl, cl)}. From
all pixels xl with class label cl = c, we estimate a spatial Gaussian distribution
N (y;µc,l, Σc,l) where y is a location in the image and µc,l, Σc,l are the mean
and the covariance of the class specific Gaussian. In our implementation, Σc,l is
simplified to a diagonal matrix to reduce runtime.

For inference, we convert a superpixel with width w, height h, and centered
at x also into a Gaussian distribution N (y;µx, Σx) where µx = x and Σx is
a diagonal matrix with diagonal ((w2 )2, (h2 )2). The class probability for a single
tree and a superpixel ending in leaf l is then given by the integral

p(c|x; θt) =

∫
N (y;µc,l, Σc,l)N (y;µx, Σx)dy = N (µx;µc,l, Σc,l +Σx) (7)

∝ exp

(
−1

2
(µx − µc,l)T (Σc,l +Σx)

−1
(µx − µc,l)

)
. (8)

In our implementation, we omit the normalization constant and use (8). Several
trees are combined as in (1). Instead of using only one Gaussian per class, a
mixture of Gaussians can be used as well.
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The accuracy can be further improved by smoothing. Let Nx be the neigh-
boring superpixels of x including x itself. The class probability for the superpixel
x is then estimated by

p(c|x) =
1

|Nx|
∑
y∈Nx

p(c|y). (9)

To reduce the runtime for videos, the inferred class for a superpixel can be
propagated to the next frame. We propagate the label of a cell in the quadtree to
the next frame, if the location and size does not change and if the mean intensity
of the pixels in the cell does not change by more than 5. Otherwise, we classify
the cell by the random forest.

4 Experiments

For the experimental evaluation, we use the CamVid dataset [4]. The images in
this dataset have a resolution of 960x720 pixels. The CamVid dataset consists of
468 training images and 233 test images taken from video sequences. There is one
sequence where frames are extracted at 15Hz and 30Hz and both are included
in the training set. Most approaches discard the frames that were extracted at
15Hz resulting in 367 training images. We report results for both settings. The
dataset is annotated by 32 semantic classes, but most works use only 11 classes
for evaluation, namely road, building, sky, tree, sidewalk, car, column pole, fence,
pedestrian, bicyclist, sign symbol. We stick to the 11 class protocol and report
the global pixel accuracy and the average class accuracy [3]. The runtime is
measured on a CPU with 3.3GHz single-threaded.

Our implementation is based on the publicly available CURFIL library [9],
which provides a GPU and CPU version for random forests. As baseline, we use
a random forest as described in Section 3.1. In Table 1, we report the accuracy
and runtime for a single tree. The baseline denoted by pixel stride 1 requires
around 1500 ms for an image, which is insufficient for real-time applications. The
runtime can be reduced by downsampling the image or classifying only a subset
of pixels and interpolation. We achieved the best trade-off between accuracy and
runtime for a stride of 15 pixels in x and y-direction. The final segmentation is
then obtained by nearest-neighbor interpolation. Larger strides decreased the
accuracy substantially. While this reduces the runtime by factor 5.6 without
reducing the accuracy, the approach requires still 280 ms.

We now evaluate the superpixel based approach proposed in Section 3.2. We
first evaluate superpixel classification based on the empirical class distribution
p(c;Sl), which is denoted by sp. Compared to the baseline the runtime is reduced
by factor 56 and compared to interpolation by factor 10 without reducing the
accuracy. The proposed approach achieves real-time performance with a run-
time of only 27.5 ms. Due to the efficient quadtree structure the computational
overhead of computing the superpixels is only 2 ms.

In the following, we evaluate a few design choices. Converting an RGB image
into the CIELab color space takes 1 ms. The comparison of sp (CIELab) with
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Table 1. Results for one tree trained on all 468 training images. The last 4 rows report
the results when only the sequences recorded with 30 Hz are used for training (367).

Global Pixel Average Class Average
Accuracy Accuracy time (ms)

pixel stride 1 63.54 40.61 1549
pixel stride 15 64.92 41.21 277

superpixel (sp) 65.11 41.13 27.50
sp - RGB 62.25 36.42 26.47
sp - fix region (sp-fr) 65.29 42.48 28.11
sp - 1 Gaussian 65.16 41.36 29.64
sp - 2 Gaussians 66.41 42.29 26.58

sp-fr - 2 Gaussians (sp-fr-Gauss2) 67.13 43.19 26.25
sp-fr-Gauss2 + smoothing 75.76 47.93 45.24
sp-fr-Gauss2 + propagate 66.49 42.88 18.24
sp-fr-Gauss2 + sm. + prop. 75.03 47.45 37.10

sp-fr-Gauss2 (367 images) 67.06 43.47 23.26
sp-fr-Gauss2 + smoothing (367 images) 74.80 48.00 41.71
sp-fr-Gauss2 + propagate (367 images) 67.00 43.21 15.89
sp-fr-Gauss2 + sm. + prop. (367 images) 74.67 47.19 34.50

sp - RGB (RGB) in Table 1, however, reveals that the RGB color space degrades
the accuracy substantially. We also investigated what happens if the number of
parameters of the weak classifiers fθ(x) (3)-(6) are reduced by setting x1 = 0,
which is denoted by sp-fr. It slightly increases the average class accuracy com-
pared to sp since one region R is fixed to the pixel location which improves the
accuracy for small semantic regions. Small regions, however, have a low impact
on the global pixel accuracy. If we use (8) instead of the empirical class distri-
bution to classify a superpixel, denoted by sp - 1 Gaussian, the accuracy does
not improve but the runtime increases by 2 ms. If we use two Gaussians per
class, one for the left side of the image and one for the right side, the accuracy
increases slightly. Note that the runtime even decreases since (8) becomes more
often zero for 2 Gaussians than for 1 Gaussian.

For the further experiments, we use the superpixel classification with fixed
region and two Gaussians, denoted by sp-fr-Gauss2. As mentioned in Section 3.2
the superpixel classification can be improved by spatial smoothing, which is
denoted by smoothing. This increases the accuracy substantially but also the
runtime to 45 ms. The label propagation on the contrary reduces the runtime
to 18 ms without a substantial decrease in accuracy. The smoothing can also
be combined with label propagation. This gives nearly the same accuracy as
sp-fr-Gauss2 + smoothing, but the runtime is with 37 ms lower.

If we use only the 367 images sampled at 30 Hz instead of all 468 images for
training, the accuracy is the same but the runtime is reduced by around 3 ms.
Since the larger set is based on sampling one sequence twice at 15 Hz and 30 Hz,



Real-time Semantic Segmentation 7

the larger set does not contain additional information and the accuracy therefore
remains the same. The additional training data, however, increases the depth of
the trees and thus the runtime. The classification without feature computation
takes around 4 ms for a tree of depth 20 and 8-10 ms for a tree of depth 100.
For 1000 superpixels sampled from each of the 468 training images, the trees can
reach a depth of 100.

Table 2. Results for 10 trees trained on all 468 training images. The last 4 rows report
the results when only the sequences recorded with 30 Hz are used for training (367).

Global Pixel Average Class Average
Accuracy Accuracy time (ms)

pixel stride 1 74.60 48.56 11288
pixel stride 15 74.58 48.69 301.7
CCF features 71.68 51.19 28476

sp-fr-Gauss2 77.49 51.29 105.3
sp-fr-Gauss2 + smoothing 79.62 51.77 131.5
sp-fr-Gauss2 + propagate 76.62 49.99 40.19
sp-fr-Gauss2 + sm. + prop. 78.56 50.79 58.75

sp-fr-Gauss2 (367 images) 77.43 51.22 102.5
sp-fr-Gauss2 + smoothing (367 images) 79.99 52.20 111.5
sp-fr-Gauss2 + propagate (367 images) 76.82 50.48 36.48
sp-fr-Gauss2 + sm. + prop. (367 images) 79.30 51.68 55.47

In Table 2, we report the accuracy and runtime for 10 trees. Increasing the
number of trees from one to ten increases the global pixel accuracy of the baseline
by 11 percentage points and the average class accuracy by 8 percentage points.
We also evaluated the use of convolutional channel features (CCF) [15] which are
obtained by the VGG-16 network [16] trained on the ImageNet (ILSVRC-2012)
dataset. As in [17], the features are combined with axis-aligned split functions
to build weak classifiers. Without finetuning the features do not perform better
on this dataset. The extraction of CCF features is furthermore very expensive
without a GPU. Similar to the baseline, the global pixel accuracy and average
class accuracy is also increased for sp-fr-Gauss2 by 10 and 8 percentage points,
respectively. Only if spatial smoothing is added the increase is only 4 percentage
points, but it still improves the accuracy. The runtime increases by factor 4, 2.9,
2.2, 1.6 for sp-fr-Gauss2, sp-fr-Gauss2 + smoothing, sp-fr-Gauss2 + propagate,
sp-fr-Gauss2 + sm. + prop., respectively. Compared to the baseline pixel stride 1,
the runtime is reduced by factor 192 while increasing the accuracy if label prop-
agation and smoothing are used. Figure 2 plots the accuracy and runtime of
sp-fr-Gauss2 + propagate and sp-fr-Gauss2 + sm. + prop. while varying the
number of trees.

The impact of the depth of the quadtree is shown in Figure 3. The accuracy
but also the runtime increases with the depth of the quadtree since the cells get
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Fig. 2. Accuracy and average prediction time with respect to the number of trees.
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Fig. 3. Accuracy and average prediction time for one tree using different quadtree
depths when creating superpixels. The results are reported for sp-fr-Gauss2.

smaller the deeper the trees are. Limiting the depth of the quadtrees to seven
gives a good trade-off between accuracy and runtime. This setting is also used
in our experiments.

We finally compare our approach with the state-of-the-art in terms of accu-
racy in Table 3. The first part of the table uses all training images for training.
Our approach outperforms CURFIL [9] in terms of accuracy and runtime on
a single-threaded CPU. Although the approach [18] achieves a higher global
pixel accuracy, it is very expensive and requires 16,6 seconds for an image with
resolution of 800x600 pixels. Our fastest setting requires only 40 milliseconds.

The second part of the table uses the evaluation protocol with 367 images.
The numbers are taken from [3]. The convolutional neural network proposed
in [3] achieves the best accuracy and requires around 2 seconds per image on a
GPU. The methods based on CRFs [6] require 30 to 40 seconds for an image.
The method [4] is based on random forests and structure-from-motion. It re-
quires one second per image if the point cloud is already computed by structure-
from-motion. The methods [19, 8] are also too slow for real-time applications. In
contrast, our approach segments an image not in the order of seconds but mil-
liseconds while still achieving competitive accuracies. A few qualitative results
are shown in Figure 4.
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5 Conclusion

In this work, we proposed a real-time approach for semantic segmentation on a
single-threaded architecture. Compared to the baseline we reduced the runtime
by factor 192 while increasing the accuracy. This has been achieved by combining
an efficient superpixel representation based on quadtrees with random forests
and combining label propagation with spatial smoothing. Compared to the state-
of-the-art in terms of accuracy, our approach achieves competitive results but
runs in real-time without the need of a GPU. This make the approach ideal for
applications with limited computational resources.

Acknowledgements. The work has been financially supported by the DFG project
GA 1927/2-2 as part of the DFG Research Unit FOR 1505 Mapping on Demand
(MoD).

Table 3. Comparison with state-of-the-art approaches. The first six rows shows results
for all 468 training images. The lower part report the results when only the sequences
recorded with 30 Hz are used for training (367).

Global Pixel Average Class Average
Accuracy Accuracy time (ms)

Super Parsing [18] 83.3 51.2
CURFIL [9] 65.9 49.8 34163
sp-fr-Gauss2 77.5 51.3 105.3
sp-fr-Gauss2 + smoothing 79.6 51.8 131.5
sp-fr-Gauss2 + propagate 76.6 50.0 40.2
sp-fr-Gauss2 + sm. + prop. 78.6 50.8 58.8

Appearance [4] 66.5 52.3
SfM + Appearance [4] 69.1 53.0
Boosting [6] 76.4 59.8
Dense Depth Maps [20] 82.1 55.4
Structured Random Forests [8] 72.5 51.4
Neural Decision Forests [19] 82.1 56.1
Local Label Descriptors [21] 73.6 36.3
SegNet - 4 layer [3] 84.3 62.9 2000
Boosting + pairwise CRF [6] 79.8 59.9
Boosting + Higher order [6] 83.8 59.2
Boosting + Detectors + CRF [7] 83.8 62.5
sp-fr-Gauss2 (367 images) 77.4 51.2 102.5
sp-fr-Gauss2 + smoothing (367 images) 80.0 52.2 111.5
sp-fr-Gauss2 + propagate (367 images) 76.8 50.5 36.5
sp-fr-Gauss2 + sm. + prop. (367 images) 79.3 51.7 55.5
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Fig. 4. Examples of segmentation results. First row: original image. Second row: pixel
stride 1. Third row: sp-fr. Fourth row: sp-fr-Gauss2 + propagate. Fifth row: sp-fr-
Gauss2 + sm. + prop. Sixth row: ground truth.
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