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Abstract

We propose Social Diffusion, a novel method for short-
term and long-term forecasting of the motion of multiple
persons as well as their social interactions. Jointly fore-
casting motions for multiple persons involved in social ac-
tivities is inherently a challenging problem due to the inter-
dependencies between individuals. In this work, we lever-
age a diffusion model conditioned on motion histories and
causal temporal convolutional networks to forecast indi-
vidually and contextually plausible motions for all partic-
ipants. The contextual plausibility is achieved via an order-
invariant aggregation function. As a second contribution,
we design a new evaluation protocol that measures the plau-
sibility of social interactions which we evaluate on the Hag-
gling dataset, which features a challenging social activity
where people are actively taking turns to talk and switching
their attention. We evaluate our approach on four datasets
for multi-person forecasting where our approach outper-
forms the state-of-the-art in terms of motion realism and
contextual plausibility.

1. Introduction

Understanding and anticipating social interactions in
groups of people is a challenging and highly relevant
topic [35, 9, 32, 45, 47, 5, 34]. For instance, it is essen-
tial for socially-compliant robots [44], but it is also relevant
for neuroscience and social sciences since it allows to de-
velop computational models on how the behavior of other
persons is perceived and how it changes the own behavior.

Forecasting realistic social interactions, however, is very
challenging for two reasons. First, social interactions tend
to last for tens of seconds [33] or even minutes - much
longer than the prediction from most of the existing human
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motion anticipation models [23, 69, 3, 22, 27, 42, 49, 11, 25,
37, 4, 14, 41, 40]. Second, social interactions consist of in-
terdependent motions [54, 36], which requires modeling the
relationships among all individuals. For example, in conver-
sational turn-taking, a person’s turn to talk highly depends
on the start/end of the others’ speaking. While multi-person
motion anticipation has emerged as a new topic, current ap-
proaches [23, 69, 3] do not pay much attention on complex
social interactions. For instance, they do not preserve the
social role of individuals in a group such that the interac-
tions become socially implausible over time.

To address the limitations of existing models, we pro-
pose Social Diffusion to predict motions of multiple peo-
ple and ensure contextually plausible interactions, as shown
in Fig. 1. To this end, we learn the distribution of human
motion by leveraging a diffusion model [39, 28, 52, 58,
24, 59, 62, 73]. To enforce information exchange among
people, which is critical to predicting contextually plausi-
ble interactions, we introduce an order-invariant aggrega-
tion function to aggregate motion features from all people.
For inference, we feed back the input sequence to the signal
during the reverse-diffusion steps to condition the motion
generation on the past motion. Our method is fully convo-
lutional which allows us to generate sequences of arbitrary
size. This allows us to not just forecast the next few seconds
of an input motion but also to forecast social interactions
that last longer. Furthermore, our approach is very flexi-
ble in the sense that the number of persons during training
and inference can differ. To the best of our knowledge, our
approach represents the first diffusion model that produces
multi-person motions at the same time.

As a second contribution, we propose a new evaluation
protocol for social interactions based on Symbolic Social
Cues, which measures whether the forecast motion is so-
cially plausible. Our key observation is that the probabilities
of transitions between social interaction states are highly



Figure 1: We propose an approach for multi-person motion anticipation: given a sequence of human social interactions (blue-
red skeletons), the proposed model forecasts multi-person motions where the social roles are preserved and the interactions
are socially plausible.

correlated with the plausibility of predicted social interac-
tions. In a conversation, for example, a person usually starts
talking only when a peer stops talking. To evaluate pre-
dicted motions, we first build the state transition graph by
extracting states from the motions. We then treat the state
transition graph as a probability distribution and compare it
to the real data distribution.

For evaluation, we use the Haggling dataset [30] which
comprises 175 videos of well-defined triadic social inter-
actions. In contrast to other existing multi-person human
motion datasets [43, 66, 69], the persons have different so-
cial roles that impact their behavior. We furthermore eval-
uate our approach on the MuPoTS-3D [43], 3DPW [67],
and CMU-Mocap [1, 69] dataset. On all four datasets, our
approach outperforms the state of the art for multi-person
human motion forecasting.

In summary, our contribution is two-fold:

1. We propose Social Diffusion, the first stochastic multi-
person motion anticipation model that outperforms the
state of the art on common multi-person motion antic-
ipation datasets.

2. We propose a novel social interaction evaluation pro-
tocol that considers not only the validity of poses but
also the plausibility of social interactions.

2. Related Work
Single Person Human Motion Prediction Human mo-
tion prediction, which typically refers to generating mo-
tion sequences given a prefix segment, has been exten-
sively studied in the past few years. Most recent papers
focus on single person 3D predictions. Due to the inherent
temporal nature of human motion, various temporal-based
methods, such as recurrent neural networks (RNNs) [18,
22, 27, 42, 49, 48, 61, 72], temporal convolutional net-
works [11, 25, 37], transformers [4, 14, 12] and graph neural
networks (GNNs) [14, 41, 40] have been used for this task.
For long-term predictions, auto-regressive models that op-
erate in the discrete space [46, 38, 61] have shown success,
where a long prediction sequence can be obtained without

converging to mean poses. Recently, anchor-based meth-
ods [16, 68] have been proposed; these focus on forecasting
characteristic anchor poses rather than the entire sequence
auto-regressively. To achieve better interactions with en-
vironments, [7, 70, 68, 74] proposed various ways to in-
clude contextual information into human motion predic-
tions. Since generated motions can be controlled with a
high-level guidance such as action class or text, some ap-
proaches [50, 13] used Variational Auto-Encoders [58] to
solve this problem. Going beyond single human prediction,
we predict the motions and interactions of multiple humans.
Multi-person Anticipation Modeling multi-person inter-
actions has been a long standing problem [46, 23, 2, 65, 20,
30, 46, 63, 75]. For instance, DR2N [60] predicts the activ-
ities of multiple people given a past video sequence. For
a given frame, personal relationships between candidates
are estimated using a graph attention network (GAT) [65]
while temporal relationships are predicted using recurrent
neural networks. Recently, Wang et al. [69] addressed
multi-person 3D motion trajectory prediction via a Multi-
Range Transformers framework. Guo et al. [23] introduced
Cross-Interaction Attention to jointly model highly expres-
sive dance sequences. Joo et al. [30] introduced a triadic
haggling game for social signal prediction, based on Panop-
tic Studio [29, 31]. In their work they predict the motion of
a single person given the motion of the others. Similarly,
[46] predicts motions based on the other actors’ behavior.
Crucially, both methods only predict the motion of a single
individual, given other persons social signals.
Diffusion Models Diffusion models [24, 57, 59] belong to
the family of probabilistic generative models, which convert
the training data successively to Gaussian noise, and then
learn to recover the data by reversing this noising process.
Diffusion models have emerged as powerful deep genera-
tive models with breakthroughs in many applications, in-
cluding image synthesis [24, 15], segmentation [10], and
natural language processing [8, 26]. For conditioned gener-
ation, [15] introduced classifier-guided diffusion, and [55]
takes the inpainted images as denoised by the model. More
recently, [62, 73] have suggested diffusion models for mo-
tion generation; however, they are limited to single human



Figure 2: Model overview: the reverse diffusion process
g consists of a fully convolutional causal encoder e and a
fully convolutional causal decoder d that produces a de-
noised motion sequence x̂i

0 ≡ x̂i,1:N
0 for person i, given the

bottleneck state hi and the aggregation function Γ({hj | j ∈
1, ..., p}) over all people in the scene.

3D motion prediction. To the best of our knowledge, we are
the first to build a stochastic multi-person motion anticipa-
tion model that can predict very long-term future motions.

3. Social Diffusion Model
As illustrated in Fig. 1, we aim to forecast the motion

of multiple persons that interact with each other. The fore-
cast motion should be realistic and socially plausible. For
instance, not all persons should talk at the same time. For-
mally, we represent a human motion sequence with p peo-
ple of length N as X1:N ∈ RN×p×δ where δ represents the
dimension of the individual pose vector at a given frame.
Our goal is then to predict the future motion X̂n+1:N for all
people, given their past motions X1:n:

X̂n+1:N = SDM(X1:n). (1)

Before we describe the proposed Social Diffusion Model
(SDM) in Section 3.2, we will briefly describe a generic
diffusion model [24] in Section 3.1. In Section 4, we will
then introduce the social interaction evaluation protocol.

3.1. Diffusion Model

A latent representation XT ∼ N (0,1) is obtained via a
T step Markov Gaussian noising process q(XT |X0) where
X0 ≡ X1:N is a real motion sequence from the training
set. The Markov Gaussian noising process can be written in
closed form:

q(Xt|X0) = N (Xt;
√
αtX0, (1− αt)I) (2)

where αt ∈ (0, 1) is a step-dependent fixed hyper-
parameter. To sample from the generative model, we learn

to invert the noising step using the generator function g:

X̂0,t = g(Xt, t) (3)

The key contribution of our model is the novel generator
function g, which models social interactions over time and
will be described in Section 3.2. Following [24, 62, 51], the
loss during training is defined by:

L = EX0∼p(X),t∼[1,T ]

[∣∣∣∣X0 − g(Xt, t)
∣∣∣∣] (4)

For inference, we reverse-iterate over Equation (3), start-
ing at sampling step T and latent representation XT ∼
N (0,1). At each iteration t, we slowly denoise the motion
sequence using (2) and (3):

X̂0,t−1 = g(q(X̂t−1|X̂0,t), t− 1) (5)

The final denoised motion is obtained when t = 1.

3.2. Multi-person Motion Generator

The diffusion model described in Section 3.1 produces
unconditioned motion. In order to use the model for motion
forecasting, we need to condition the model on the observed
motion sequence of all persons X1:n

0 = X1:n. To this end,
we modify the inference sampling (5) to also include past
motion as follows:

X̂0,t−1 = g(q(X̂t−1|X1:n ∪ X̂n+1:N
0,t ), t− 1) (6)

The reverse diffusion process g(Xt, t) consists of three
components, a causal temporal convolutional encoder e,
a causal temporal convolutional decoder d, and an order-
invariant function Γ that aggregates the interaction of the
different persons, see Figure 2.

The encoder e and the decoder d process each individ-
ual sequence independently while Γ ensures that informa-
tion flows between all persons in the scene. Formally, given
xi
t = X̂i,1:N

t ∈ RN×δ , which is the motion sequence for
a single person i at scheduled noising step t, we obtain for
each person i in the scene a bottleneck encoding hi:

hi = e(xi
t, t) ∀i ∈ 1, ..., p. (7)

The encoder e consists of a 4-layer temporal convolutional
network where each layer progressively reduces the tempo-
ral resolution by half via striding. In each layer, the noising
step t is fed via sinusoidal positional encoding [64]. To pro-
duce the denoised motion x̂i

0, the decoder d can be utilized
as follows:

x̂i
0 = d

(
hi, t,Γ(hj ∀j ∈ 1, ..., p)

)
(8)

where d is a 4-layer temporal convolutional network and
each layer progressively doubles the temporal resolution via



linear upsampling. As for the encoder, the noising step t is
fed via sinusoidal positional encoding to each layer. In addi-
tion, the output of the order-invariant aggregation function
Γ is concatenated to hi before passing it to the first convo-
lutional layer. The estimated motion sequences x̂i

0 of each
person i at noising step t are then concatenated to obtain
X̂0,t and the approach proceeds to the next step t−1.

The order-invariant aggregation function Γ passes infor-
mation from other people in the scene. In our experiments,
we evaluate two aggregation functions, averaging (ΓE) over
all people and multi-headed attention [64] (Γattn):

Γattn(H) = MultiHead(H) (9)

ΓE(H) =
1

p

p∑
i=1

hi (10)

where H = {hi}pi=1 are the embeddings of all layers of the
encoder and for all people in the scene. MultiHead(H) cal-
culates the self-attention across all people for a given frame.

3.3. Implementation Details

We follow state-of-the-art diffusion models [24, 39, 62]
and use the cosine variance schedule. We set the number of
diffusion steps to T = 1000. The encoder e consists of four
layers of convolutional blocks with kernel size 3 and stride
2. The decoder d consists of four layers of convolutional
blocks with additional upsampling layers that upsample the
input sequence by factor two using linear interpolation. We
standardize the training data to have zero mean and stan-
dard deviation one. We normalize all poses by splitting pose
and global translation: each pose is transformed into a hip-
centric coordinate frame and the pose is concatenated with
the global rotation and translation to form a δ dimensional
pose vector.

4. Symbolic Social Cues Protocol
We are interested in anticipating the social interactions

among multiple people. Multi-person social interactions
consist of several intricate and complex behaviours such
as paying attention to a specific person [56] and turn-
taking [54, 36], which usually take tens of seconds or even
minutes. Current state-of-the-art multi-person motion an-
ticipation methods [3, 69] calculate the Mean Per Joint Po-
sitional Error (MPJPE) using the ground-truth sequence,
which is only meaningful for short time horizons of around
one second [6, 21, 53, 61, 71]. More important, however, is
that it does not measure the realism of social interaction.

We thus propose the Symbolic Social Cues Protocol
(SSCP), which divides the social interactions into a set of
discrete interaction classes. In SSCP, we define a social sig-
nal function

C1:N = s(X1:N ) (11)

which takes as input a multi-person motion sequence
X1:N ∈ RN×p×δ and produces a discrete symbolic repre-
sentation C1:N = {cn}Nn=1, where cn ∈ {1, ...,m} and m
represents the total number of symbolic states. A symbolic
state is a unique summary of the current state of interac-
tion, e.g., a person is talking and another person is listen-
ing. Given a test set X = {X1:N

i }Ki=1 with K sequences,
we can now calculate the probability distribution psscp over
the social state transitions.

psscp(X ) =
1

ζ

K∑
i=1

stm(s(X1:N
i )) (12)

where stm(C1:N
i ) produces the m×m state transition ma-

trix for the discrete symbolic sequence C1:N and ζ =∑K
i=1

∑
m′,m′′ stm(C1:N )m′,m′′ is a normalization con-

stant to ensure that psscp is a valid probability distribution.
To evaluate a motion anticipation model f , we predict

the future motion for all K test sequences from a fixed start
frame n until the end of the sequence N :

X̂n+1:N = {f(X1:n
i )}Ki=1 (13)

We can now calculate the distance between the generated
and ground-truth social motion distribution:

DJSD

(
psscp(Xn:N ), psscp(X̂n:N )

)
. (14)

DJSD is the squared Jensen–Shannon distance [17, 19]:

DJSD(p||q) =

√(
DKL(p||p+q

2 ) +DKL(q||p+q
2 )

)
2

(15)

where p and q are probability distributions and DKL is the
Kullback-Leibler divergence. Note that we compare the
generated motion X̂n+1:N to the test set Xn+1:N with the
same start frame as the data distribution might shift across
time.

5. Experiments
We evaluate our approach on four datasets. Follow-

ing [69], we report the Mean Per Joint Positional Er-
ror (MPJPE) in global and local aligned coordinates for
the multi-person human motion datasets MuPoTS-3D [43],
3DPW [67] and CMU-Mocap [1, 69]. MuPoTS-3D [43]
contains recordings of 2 to 3 persons in workout settings.
Interactions between the persons are rare. 3DPW [67] con-
tains recordings of 1 to 2 persons and the sequences cover
a wide range of different activities. The level of interac-
tions range from no interaction and little interaction, like
two persons walking, to close interactions such as dancing.
CMU [69] combines the motion of different sequences from
the CMU-Mocap dataset [1]. The composition of motion
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Figure 3: A sample frame from the Haggling dataset [30]
for evaluating social interactions. (a): 3D poses in a hag-
gling sequence. Blue limbs represent the left body side
while red limbs represent the right body side. The buyer’s
attention is indicated as green arrow. (b): a sample video
frame from a haggling sequence.

Method CMU-Mocap MuPoTS-3D 3DPW

1s 2s 3s 1s 2s 3s 1s 2s 3s
LTD [41] 1.37 2.19 3.26 1.19 1.81 2.34 4.67 7.10 8.71
HRI [40] 1.49 2.60 3.07 0.94 1.68 2.29 4.07 6.32 8.01
SP [2] 1.15 2.71 3.90 0.92 1.67 2.51 4.17 7.17 9.27
MRT [69] 0.96 1.57 2.18 0.89 1.59 2.22 3.87 6.12 7.83
Ours 0.74 1.06 1.34 1.15 1.29 1.44 1.64 2.72 3.55

Table 1: MPJPE ↓ in dm on different datasets.

sequences, however, does not reflect realistic interactions.
For these datasets, 1 second of human motion is observed
and 1-3 seconds need to be forecast. As our model is gen-
erative, we sample 8 samples for each test sequence and
report the average over all 8 samples. The source code in-
cluding trained evaluation models and the dataset transfor-
mation script is publicly available1.

5.1. Haggling Forecasting Dataset

Since the three datasets contain multiple persons, but
very few social interactions, we prepared a new dataset for
multi-person forecasting in the context of social interac-
tions. For this, we utilize the Haggling dataset [30] where
122 participants play a social game with two sellers trying
to sell their products to a buyer. Each game lasts one minute
and contains interesting triadic interactions such as turn-
taking and attention changes. A sample scene is shown in
Figure 3. The dataset consists of 135 training sequences and
40 test sequences, sampled at 30Hz. Some of the 3D poses
in the dataset are noisy as they have been estimated [29, 31]
and we manually correct them. In total, the dataset consists
of 234, 907 training and 69, 951 test frames, each with three
people. For more details, please see the supplementary ma-
terial.

For evaluation, we take the first 10% of a sequence

1https://github.com/jutanke/social_diffusion

as observation and forecast the remaining 90% of the se-
quence, but we also evaluate the motion at intermediate
frames ranging from frame 1 to frame 1300. It needs to
be noted that long-term forecasting is highly relevant for
neuroscience and social sciences since it allows to develop
computational models on how the behavior of other per-
sons is perceived and how it changes the own behavior. For
measuring the plausibility of the forecast motion of each
individual, we use the Normalized Directional Motion Sim-
ilarity (NDMS) [61] since the measure not only considers
static poses but also the motion of the forecast sequence.
Furthermore, it can be applied to sequences of any length.
NDMS, however, does not measure if the social interactions
are plausible.

For evaluating the social motion quality, we utilize the
proposed Symbolic Social Cues Protocol described in Sec-
tion 4. To this end, we need to specify the classes of social
interactions. A haggling activity is composed of the sellers
trying to convince the buyer to purchase their products and
the buyer switching attention between the sellers. Through-
out the game, certain social patterns emerged [56, 36]:

1. Most of the time, only a single person speaks
2. For almost all frames, at least one person is talking
3. The sellers speak roughly the same amount of time

while the buyer seldom talks
4. The buyer pays attention (looks at) to whoever talks
5. The sellers take turns to speak but sometimes interrupt

each other

Given the well-defined structure of the task and the emerg-
ing social behaviors, we reduce the haggling game to two
key signals:

• talking: defines who is talking
• attention: defines who of the two sellers has the
buyer’s attention

Given all possible combinations (e.g., both sellers can talk at
the same time, or nobody talks), we end up with 16 possible
states for each frame and formulate the social interactions as
a symbolic representation over time. Note that we have to
distinguish between left/right seller to catch events such as
attention switching. Please see the supplementary material
for more details.

We define the social signal function s(X1:N ) as Equa-
tion (11), which takes a sequence of multi-person motion
X1:N as input and generates one of the 16 distinct states per
frame. For the social signal function s to work on any hag-
gling motion sequence, we need to determine three pieces
of information:

1. who the buyer is,
2. whom the buyer is paying attention to,
3. whether someone is speaking.



Method CMU-Mocap MuPoTS-3D 3DPW
Root Pose Root Pose Root Pose

1s 2s 3s 1s 2s 3s 1s 2s 3s 1s 2s 3s 1s 2s 3s 1s 2s 3s
LTD [41] 0.97 1.73 2.62 0.98 1.21 1.37 0.89 1.39 1.91 0.88 1.14 1.31 4.28 6.79 8.41 1.54 1.76 1.98
HRI [40] 0.96 2.06 3.11 1.05 1.37 1.58 0.66 1.30 2.16 0.73 1.07 1.30 3.67 6.42 8.64 1.43 1.75 1.94
SP [2] 0.96 2.01 2.96 1.03 1.41 1.71 0.96 1.38 2.21 0.72 1.08 1.30 3.76 6.86 9.07 1.60 1.95 2.15
MRT [69] 0.60 1.12 1.71 0.79 1.05 1.22 0.67 1.25 1.86 0.69 0.99 1.19 3.42 5.69 7.30 1.52 1.75 1.93
Ours 0.72 1.10 1.44 0.38 0.46 0.49 1.14 1.28 1.42 0.59 0.64 0.67 1.66 2.76 3.59 0.94 1.03 1.06

Table 2: MPJPE ↓ in dm for root joint and pose. The lowest error is in bold and the second lowest is underscored.

Frame 1 5 10 15 20 25 30 60 120 250 500 750 1000 1300

MRT [69] 0.624 0.278 0.194 0.212 0.224 0.215 0.215 0.218 0.205 0.180 0.129 0.079 0.062 0.047
Ours (Γ∅) 0.644 0.280 0.206 0.215 0.225 0.226 0.229 0.233 0.229 0.226 0.229 0.227 0.225 0.226
Ours (Γattn) 0.639 0.280 0.199 0.213 0.224 0.229 0.232 0.227 0.229 0.223 0.233 0.228 0.233 0.223
Ours* (ΓE) 0.640 0.279 0.204 0.216 0.227 0.228 0.230 0.233 0.227 0.222 0.230 0.229 0.230 0.226

Table 3: Per-frame average NDMS ↑ score on the Haggling dataset. The highest score is in bold and the second highest is
underscored.

To solve (1) we train a simple buyer detection network,
consisting of three layers of bi-directional Gated Recurrent
Units, which gets as input a haggling motion and outputs
the likelihood of each participant being the buyer. In Table
5, we report our accuracy of this approach. We see that the
buyer detector correctly identifies the buyer all the time on
the test set.

For (2), we define the buyer’s attention as whomever they
look at, which can be easily calculated from the 3D body
pose:

argmin
i∈{left,right}

[
nT

(
di
|di|

)]
(16)

where dleft and dright are the directional vectors from the
buyer nose to the left and right seller nose, respectively, pro-
jected onto the ground plane and n is the 2D unit vector
that is perpendicular to the left eye→right eye vector of the
buyer, projected onto the ground plane.

Last but not least, to determine if someone is speak-
ing we utilize an off-the-shelf action classification network
consisting of three layers of bi-directional Gated Recurrent
Units. For training, we use the annotation of the Haggling
dataset [30] which indicates if a person is speaking or not.
The classifier achieves 87% accuracy in speech detection on
the test set.

5.2. Multi-Person Forecasting

We first report the results for the multi-person human
motion datasets MuPoTS-3D [43]2, 3DPW [67]1 and CMU-
Mocap [1, 69]. We follow [69] and report the Mean
Per Joint Positional Error (MPJPE) using global coordi-
nates in Table 1. Our approach outperforms the methods
LTD [41], HRI [40], SP [2], and MRT [69] by a large mar-
gin. While some methods perform better for the first second
on MuPoTS-3D [43], our approach achieves a much lower

2Data access and processing was conducted at University of Bonn

error for all other settings and datasets. On the most dif-
ficult dataset 3DPW [67], the error is reduced by 57.6%,
55.6%, and 54.7% for 1, 2, and 3 seconds, respectively. As
in [69], we also report the error of the position of the root
joint and pose error in local coordinates, i.e., setting the root
position for all frames to zero, in Table 2. The results show
that our approach forecasts by far the most accurate poses
and outperforms the state of the art by a large margin on all
datasets. Only the position of the root joint is slightly better
estimated by other methods at the beginning of the datasets
MuPoTS-3D and CMU-Mocap. At 3 seconds, our approach
also achieves the lowest root joint error for all three datasets.

5.3. Multi-Person Forecasting in the Context of So-
cial Interactions

For the remaining experiments, we evaluate our ap-
proach on the newly prepared Haggling dataset since it
contains more social interactions as the other datasets.
We compare our approach to Multi-Range Transformers
(MRT) [69], which performed better than other approaches
in Section 5.2. We used the publicly available source code
and adjusted the approach to work with 30Hz. We kept all
other settings as is.

We first report the per-frame NDMS (higher is better)
at different frames in Table 3. Our experiments show that
MRT [69] is capable of generating realistic motion for a few
seconds. However, after 120 frames (4s) the NDMS score
drops significantly. This is caused by the auto-regressive
motion forecasting strategy adopted by MRT, which results
in error accumulation over time. In contrast, our method
continues to predict motions with good NDMS scores well
into the future. As discussed in Section 3.2, we compare
different variants of the aggregation function Γ. In terms
of Γ, there are no major differences in terms of NDMS, but
they all perform much better than MRT [69]. In Table 4,
we report the average NDMS score over the entire forecast
sequence. We observe that Γ∅, i.e., using no aggregation



Figure 4: Our model is capable of generating realistic motion for 7 people from the Ultimatum sequence of Panoptic Stu-
dio [29], even though it was trained only on the triadic Haggling dataset. The Ultimatum sequence shares similarities with
the Haggling dataset such as persons taking turns and talking to each other.

(a) Train (b) Test (c) MRT [69]

(d) Ours (Γ∅) (e) Ours (Γattn) (f) Ours (ΓE)

Figure 5: State transition matrices for the states defined in
Section 5.1 for the ground-truth of the train (a) and test set
(b). The other transition matrices are obtained by the fore-
cast of the current state-of-the-art model MRT [69] on the
test set (c) and our model without context (d), with context
via attention (e), and with context via averaging (f). The
more similar the transition matrix is to the test set (b), the
closer it matches the test motion.

Train [69] Ours (Γ∅) Ours (Γattn) Ours*(ΓE)

NDMS ↑ - 0.1015 0.2301 0.2270 0.2297

SSCP ↓ 0.0999 0.4839 0.3576 0.3278 0.3252

Table 4: Per-frame average NDMS ↑ and SSCP ↓ on the
Haggling dataset.

information yields a slightly higher NDMS score than the
other versions, but the differences are very small. However,
Γattn and ΓE forecast much more plausible social interac-
tions (lower SSCP) as we will discuss next.

Test set MRT [69] Ours (Γ∅) Ours (Γattn) Ours* (ΓE)

1.0 0.3250 0.8812 0.8875 0.8938

Table 5: Accuracy ↑ of the buyer detection network. For
MRT [69], the model randomly selects a person to be the
buyer, as there is a 1/3 chance of selecting the buyer with
random chance.

5.3.1 Social Motion Evaluation

The SSCP scores are presented in Table 4 where a lower
value corresponds to more plausible forecast social inter-
actions. All our proposed variants outperform the state-of-
the-art approach MRT [69]. Using no aggregation infor-
mation (Γ∅) performs worse than the aggregation functions
Γattn (9) and ΓE (10), which is expected since the aggrega-
tion function passes information from other people in the
scene. The average aggregation (ΓE) performs slightly bet-
ter than the more complex multi-headed attention approach
(Γattn). We conjecture that averaging bottleneck encodings
over all people introduces an inductive bias to pay the same
attention to everyone, which works well for modelling the
haggling game. For completeness, we also report the SSCP
score of the training set.

We can draw some insights about what motion each
model generates by looking at the state probability transi-
tion matrices in Figure 5. For example, MRT [69] (Fig-
ure 5d) produces mostly self-loops (diagonal of transition
matrix) indicating that the motion gets stuck over time.
When no context information is provided (Γ∅), our method
produces motions where all three people are talking at the
same time, as can be seen in Figure 5d, where the last two
entries (red arrow) in the transition matrix represent states
with all three people talking. This is sensible as the model
sees two sellers and only one buyer during training and
thus it is more likely to produce motion that resembles a
seller, who talks most of the time. When the context is pro-
vided, our approach overcomes this limitation as expected
and rarely produces motion where all three people are talk-
ing at the same time as shown in Figures 5e and 5f.



These observations are also confirmed when measuring
the buyer detection accuracy on the forecast motion, which
is reported in Table 5. The detector fails to identify the cor-
rect buyer in the sequences that are forecast by MRT [69]
and it nearly chooses the buyer at random with 1/3 accu-
racy. This confirms that MRT does not forecast socially
consistent sequences where the social role of the persons,
namely buyer or seller, is preserved. In contrast, our method
predicts motion where the buyer can be easily determined
most of the time. As for the SSCP scores reported in Ta-
ble 4, ΓE performs best.

In summary, the aggregation function ΓE outperforms
the other aggregation functions on the Haggling dataset [30]
as it produces the most socially plausible motion according
to our Symbolic Social Cues Protocol while also generating
highly plausible 3D body motion.

5.4. Ablation Study

Average velocity over time Freezing or unrealistically
expanding motion are common failures in human motion
anticipation. While NDMS [61] penalizes in contrast to
MPJPE errors in the velocity, visualizing the average mo-
tion velocity can give interesting insights. In Figure 6, we
plot the average velocity over all frames for all our sum-
mary function variants, the test set, and the state-of-the-
art method MRT [69]. Note that the beginning of the se-
quence has a higher velocity due to people walking into the
scene. We observe that MRT suffers from error accumula-
tion caused by the auto-regressive inference scheme. The
velocity produced by our motion tightly follows the test set
velocity for roughly 250 frames after which the test set ve-
locity is slightly larger. We attribute this to the higher de-
gree of stochasticity of real motion, which results in sudden
jerks and swings that increase the average velocity.
NDMS score over time In Figure 7, we visualize how the
NDMS scores of all proposed variants and MRT evolve over
time. For reference, we also calculate the NDMS score of
the training data which is guaranteed to be realistic. Note
that NDMS is 1 for the observed part of the test sequences.
As shown in the figure, our method achieves almost the
same level of realism as the training data while the quality
of MRT slowly degenerates over time.
Anticipating more than three people We have trained
and evaluated our model on the Haggling dataset where
each sequence consists of triadic interaction. However, the
fully convolutional nature of our approach as well as the
order-invariance of the summarization function Γ allow us
to forecast any number of people. To demonstrate this ca-
pability, we predict 7 people from the Ultimatum sequence
of Panoptic Studio [29] using only the model trained on
the Haggling dataset. This works well because the Hag-
gling and Ultimatum sequences share many social behav-
iors, such as turn-taking, talking, and paying attention while

Figure 6: Average velocity over time for the entire test mo-
tion X and generated motions X̂ . The x-axis represents the
frames while the y-axis represents the (log) average veloc-
ity of the data.

Figure 7: Average NDMS [61] score ↑ of all proposed vari-
ants, MRT, and the train set over time.

standing in a circle. Our results can be seen in Figure 4
where our model is able to predict realistic motion for 7
people, even though it was trained only on the triadic Hag-
gling dataset. More results are provided in the supplemen-
tary material.

6. Conclusion

In this work, we present Social Diffusion, a stochas-
tic multi-person motion anticipation model. The approach
not only forecasts realistic motions on the individual level,
but also plausible social interactions where the social roles
of individuals are preserved over time. The approach is
very flexible. It can be used for short and long-term fore-
casting and can be applied to larger groups than observed
during training. As a second contribution, we proposed a
new evaluation protocol to measure the realism of forecast
social interactions. We furthermore derived a dataset for
multi-person social interaction forecasting from the Hag-
gling dataset [30] where the persons have different social
roles that impact their behavior. We evaluated our approach



on four multi-person datasets and demonstrated that our ap-
proach outperforms the state-of-the-art for short-term and
long-term anticipation both in realism of forecast motion
and social interaction. The approach has still some limita-
tions. For instance, the global positions of the root joints
can be better estimated. Future directions also include ex-
tending the model to predict motions of dynamic groups of
people, e.g., at a cocktail party where any individual can
freely disengage from the current conversation group and
join another one.
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