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Abstract. Human pose estimation has been actively studied for decades.
While traditional approaches rely on 2d data like images or videos, the
development of Time-of-Flight cameras and other depth sensors created
new opportunities to advance the field. We give an overview of recent
approaches that perform human motion analysis which includes depth-
based and skeleton-based activity recognition, head pose estimation, fa-
cial feature detection, facial performance capture, hand pose estimation
and hand gesture recognition. While the focus is on approaches using
depth data, we also discuss traditional image based methods to provide
a broad overview of recent developments in these areas.

1 Introduction

Human motion analysis has been a major topic from the early beginning of com-
puter vision [1, 2] due to its relevance to a large variety of applications. With
the development of new depth sensors and algorithms for pose estimation [3],
new opportunities have emerged in this field. Human motion analysis is, how-
ever, more than extracting skeleton pose parameters. In order to understand the
behaviors of humans, a higher level of understanding is required, which we gen-
erally refer to as activity recognition. A review of recent work of the lower level
task of human pose estimation is provided in the chapter Full-Body Human Mo-
tion Capture from Monocular Depth Images. Here we consider the higher level
activity recognition task in Section 2. In addition, the motion of body parts like
the head or the hands are other important cues, which are discussed in Section 3
and Section 4. In each section, we give an overview of recent developments in hu-
man motion analysis from depth data, but we also put the approaches in context
of traditional image based methods.
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2 Activity Recognition

A large amount of research has been conducted to achieve the high level under-
standing of human activities. The task can be generally described as: given a
sequence of motion data, identify the actions performed by the subjects present
in the data. Depending on the complexity, they can be conceptually categorized
as gestures, actions and activities with interactions. Gestures are normally re-
garded as the atomic element of human movements, such as “turning head to the
left”, “raising left leg” and “crouching”. Actions usually refer to a single human
motion that consists of one or more gestures, for example “walking”, “throw-
ing”, etc. In the most complex scenario, the subject could interact with objects
or other subjects, for instance, “playing with a dog”, “two persons fighting” and
“people playing football”.

Though it is easy for human being to identify each class of these activities,
currently no intelligent computer systems can robustly and efficiently perform
such task. The difficulties of action recognition come from several aspects. Firstly,
human motions span a very high dimensional space and interactions further com-
plicate searching in this space. Secondly, instantiations of conceptually similar
or even identical activities by different subjects exhibit substantial variations.
Thirdly, visual data from traditional video cameras can only capture projective
information of the real world, and are sensitive to lighting conditions.

However, due to the wide applications of activities recognition, researchers
have been actively studying this topic and have achieved promising results. Most
of these techniques are developed to operate on regular visual data, i.e. color
images or videos. There have been excellent surveys on this line of research [4, 5,
6, 7]. By contrast, in this section, we review the state-of-the-art techniques that
investigate the applicability and benefit of depth sensors for action recognition,
due to both its emerging trend and lack of such a survey. The major advantage of
depth data is alleviation of the third difficulty mentioned above. Consequently,
most of the methods that operate on depth data achieve view invariance or scale
invariance or both.

Though researchers have conducted extensive studies on the three categories
of human motions mentioned above based on visual data, current depth based
methods mainly focus on the first two categories, i.e. gestures and actions. Only
few of them can deal with interactions with small objects like cups. Group activ-
ities that involve multiple subjects have not been studied in this regard. One of
the reason is the limited capability of current low cost depth sensors in captur-
ing large scale scenes. We therefore will focus on the first two groups as well as
those that involve interactions with objects. In particular, only full-body motions
will be considered in this section, while body part gestures will be discussed in
Section 3 and Section 4.

The pipeline of activity recognition approaches generally involve three steps:
features extraction, quantization/dimension reduction and classification. Our re-
view partly follows the taxonomy used in [4]. Basically we categorize existing
methods based on the features used. However, due to the special characteristics
of depth sensor data, we feel it necessary to differentiate methods that rely di-
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Fig. 1. Examples from the three datasets: MSR Action 3D Dataset [8], MSR Daily
Activity Dataset [9] and Gesture3D Dataset [10] c©2013 IEEE

rectly on depth maps or features therein, and methods that take skeleton (or
equivalently joints) as inputs. Therefore, the reviewed methods are separated
into depth map-based and skeleton-based. Following [4], each category is further
divided into space time approaches and sequential approaches. The space time
approaches usually extract local or global (holistic) features from the space-time
volume, without explicit modeling of temporal dynamics. Discriminative classi-
fiers, such as SVM, are then usually used for recognition. By contrast, sequential
approaches normally extract local features from data of each time instance and
use generative statistical model, such as HMM, to model the dynamics explicitly.

We discuss the depth map-based methods in Section 2.2 and the skeleton-based
methods in Section 2.3. Some methods that utilize both information are also
considered in Section 2.3. Before the detailed discussions of the existing methods,
we would like to first briefly introduce several publicly available datasets, as well
as the mostly adopted evaluation metric in Section 2.1.

2.1 Evaluation Metric and Datasets

The performance of the methods for activity recognition are evaluated mainly
based on accuracy, that is the percentage of correctly recognized actions. There
are several publicly available dataset collected by various authors for evaluation
purpose. Here we explicitly list three of them that are most popular, namely the
MSR Action 3D Dataset [8], MSR Daily Activity Dataset [9] and Gesture3D
Dataset [10]. Each of the datasets include various types of actions performed
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Datasets #Subjects #Types of activities #Data sequences

MSR Action 3D [8] 10 20 567

Gesture3D [10] 10 12 336

MSR Daily Activity 3D [9] 10 16 960
Table 1. Summary of the most popular publicly available datasets for evaluating
activity recognition performance

Fig. 2. Examples of the sequences of depth maps for actions in [8]: (a) Draw tick and
(b) Tennis serve c©2010 IEEE

by different subjects multiple times. Table 1 provides a summary of these three
datasets, while Figure 1 shows some examples. Notice that the MSR Action 3D
Dataset [8] is pre-processed to remove the background, while the MSR Daily
Activity 3D Dataset [9] keeps the entire captured scene. Therefore, the MSR
Daily Activity 3D Dataset can be considered as more challenging. Most of the
methods reviewed in the following sections were evaluated on some or all of
these datasets, while some of them conducted experiments on their self-collected
dataset, for example due to mismatch of focus.

2.2 Depth Maps-based Approaches

The depth map-based methods rely mainly on features, either local or global,
extracted from the space time volume. Compared to visual data, depth maps
provide metric, instead of projective, measurements of the geometry that are
invariant to lighting. However, designing both effective and efficient depth se-
quence representations for action recognition is a challenging task. First of all,
depth sequences may contain serious occlusions, which makes the global features
unstable. In addition, the depth maps do not have as much texture as color im-
ages do, and they are usually too noisy (both spatially and temporally) to apply
local differential operators such as gradients on. It has been noticed that directly
applying popular feature descriptors designed for color images does not provide
satisfactory results in this case [11]. These challenges motivate researchers to de-
velop features that are semi-local, highly discriminative and robust to occlusion.
The majority of depth maps based methods rely on space time volume features;
therefore we discuss this sub-category first, followed by the sequential methods.
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Fig. 3. Examples of the space-time cells of a depth sequence of the action Forward
Kick used in [13] c©2010 Springer

Depth Map-based Space Time Volume Approaches Li et al. [8] present
a study on recognizing human actions from sequences of depth maps. The au-
thors employed the concept of bag-of-points in the expandable graphical model
framework to construct the action graph [12] to encode the actions. Each node
of the action graph which represents a salient posture is described by a small set
of representative 3d points sampled from the depth maps (example depth maps
are shown in Figure 2. The key idea is to use a small number of 3d points to
characterize the 3d shape of each salient posture and to use a Gaussian Mixture
Model to effectively capture the statistical distribution of the points. In terms of
3d points sampling, the paper proposed a simple yet effective projection based
sampling scheme for sparse sampling from depth maps. Experiments were con-
ducted on the dataset collected by the authors, which is later known as the
MSR Action3D Dataset [8]. The results have shown that over 90% recognition
accuracy is achieved by only sampling 1% of the 3d points from the depth maps.

One limitation of the approach in [8] is the loss of spatial context information
between interest points. Also, due to noise and occlusions in the depth maps,
the silhouettes viewed from the side and from the top may not be reliable. This
makes it very difficult to robustly sample the interest points given the geometry
and motion variations across different persons. To address these issues, Vieira et
al. [13] presented a novel feature descriptor, named Space-Time Occupancy Pat-
tens (STOP). The depth sequence is represented in a 4d space-time grid. A
saturation scheme is then used to enhance the roles of the sparse cells which
typically consist of points on the silhouettes or moving parts of the body. Figure
3 illustrates the space-time cells from a depth sequence of the action Forward
Kick. The sequence is divided into three time segments, and each segment con-
tains of about 20 frames. Only the non-empty cells are drawn. The red points
are those in the cells that have more than a certain number of points. The ac-
curacy of the STOP features for action classification was shown to be higher in
a comparison with [8] on the MSR Action3D Dataset [8].

Wang et al. [14] also studied the problem of action recognition from depth
sequences captured by a single commodity depth camera. In order to address
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Fig. 4. The framework of the method proposed by [14]. Note that only 3d sub-volumes
are shown for illustration. In the real implementation, 4d sub-volumes are used. c©2012
Springer

the noise and occlusion issues, the authors treated a three-dimensional action
sequence as a 4d shape and proposed Random Occupancy Pattern (ROP) fea-
tures, which were extracted from randomly sampled 4d sub-volumes with dif-
ferent sizes and at different locations. Since the ROP features are extracted at
a larger scale, they are robust to noise. In the meantime, they are less sensitive
to occlusion because they encode information from the regions that are most
discriminative for the given action. The paper also proposed a weighted random
sampling scheme to efficiently explore the large dense sampling space. Sparse
coding is employed to further improve the robustness of the proposed method.
The general framework of the method proposed in [14] is shown in Figure 4.
The authors compared their results against those obtained from [8] and [13]
using the MSR Action3D Dataset [8]. Experimental results conclude that [14]
outperforms [8] by a large margin (> 10%) and is slightly superior to [13].

Yang et al. [15] developed the so-called Depth Motion Maps (DMM) to cap-
ture the aggregated temporal motion energies. More specifically, the depth map
is projected onto three pre-defined orthogonal Cartesian planes and then nor-
malized. For each projected map, a binary map is generated by computing and
thresholding the difference of two consecutive frames. The binary maps are then
summed up to obtain the DMM for each projective view. Histogram of Oriented
Gradients (HOG) is then applied to each view to extract features, and features
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Fig. 5. The framework of the method proposed by [15] c©2012 ACM

from three views are concatenated together to form the DMM-HOG descriptors.
An SVM classifier is trained on such descriptors for recognition. Compared to
many other methods in this category, the computational cost of this approach is
relatively low, since HOG is only applied to the final DMM. Evaluations based
on the MSR Action3D Dataset [8] showed high recognition rates. However, the
hand-crafted projection planes might raise problems related to view-dependency.
Their high recognition rate is partly due to the fact that subjects in the MSR-
Action3D Dataset mostly face towards the camera. An interesting exploration
they performed is to characterize the number of frames required to generate
satisfactory recognition results. The conclusion they reached is that only short
sub-sequence of roughly 35 frames is sufficient. Nonetheless, the number is in
fact largely dependent on the complexity of the actions.

More recently, Oreifej and Liu [11] presented a new descriptor for depth maps.
The authors describe the depth video sequence using a histogram capturing the
distribution of the surface normal orientation in the 4d volume of time, depth
and spatial coordinates. As the depth sequence represents a depth function of
space and time, they proposed to capture the observed changing structure using
a histogram of oriented 4d surface normals (HON4D). To construct HON4D,
the 4d space is initially quantized using the vertices of a regular polychoron.
Afterwards, the quantization is refined using a novel discriminative density mea-
sure such that additional projectors are induced in the directions where the 4d
normals are denser and more discriminative. Figure 6 summarizes the various
steps involved in computing the HON4D descriptor. Experimental results from
the standard benchmark MSR Action3D Dataset [8] showed that using the pro-
posed HON4D descriptors achieved the state of the art in recognition accuracy.

Rather than using depth maps only, Zhang et al. [16] proposed 4d local
spatio-temporal features as the representation of human activities. This 4d fea-
ture is a weighted linear combination of a visual component and a geometric
component. This approach then concatenates per-pixel responses and their gra-
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Fig. 6. The steps for computing HON4D descriptor in [11] c©2013 IEEE

dients within a spatial-temporal window into a feature vector which has over 105

elements. In order to reduce such a high dimensionality, the approach applies
K-means clustering on all feature vectors collected from a training dataset and
forms a codebook with 600 vocabularies which is used to code six activity cat-
egories: lift, remove, wave, push, walk and signal. In order to predict activities
from input videos, the approach formulates this problem as a Latent Dirichlet
Allocation (LDA) model where six activity categories are regarded as topics, and
codes calculated from 4d features are regarded as words. Gibbs sampling [17] is
then adopted for approximate estimation and inference for this high-dimensional
model, due to its efficiency. They demonstrated their approach on a self-collected
dataset with 198 short video clips, each lasting from 2 to 5 seconds, including 6
activities. Each activity has 33 video clips. The combined features (85.5%) us-
ing LDA outperforms features based on intensity (77.67%), demonstrating that
depth is an important cue to improve activity recognition accuracy.

Lei et al. [18] also combine depth and color cues, while targeting at recog-
nizing fine-grained kitchen activities. Different from the methods above that are
mainly limited to single subject motions, this work demonstrated a successful
prototype that tracks the interaction between a human hand and objects in the
kitchen, such as mixing flour with water and chopping vegetables. It is shown
that the recognition of objects and their state changes through actions is helpful
in recognizing very fine-grained kitchen activity from few training samples. The
reported system uses object tracking results to study both object and action
recognition. For object recognition, the system uses SIFT-like feature from both
color and depth data. These features are fed into an SVM to train a classifier.
For action recognition, the authors combine a global feature and a local feature.
The global feature is defined by PCA on the gradients of 3d hand trajectories
since a hand can be tracked using human skin characteristics. The local feature is
defined as bag-of-words of snippets of trajectory gradients. The training dataset
includes 35 object instances and 28 action instances. Each action instance has
only 3 samples compared with 33 in [16]. The reported overall action recogni-
tion accuracy is around 82% by combining trajectory-based action recognition
with object recognition. This shows that by combining hand-object tracking and
object-action recognition, systems like this are capable of identifying and rec-
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Fig. 7. The flow of the method proposed by Jalal et al. [19] c©2013 SAGE

ognizing objects and actions in a real-world kitchen environment with only a
small dataset. This work is only a proof of concept. Deploying such a system in
a real environment requires a larger set of objects and actions, along with vari-
ations across people and physical environments that present many challenges
not revealed in their work. Nevertheless, there are many possibilities to enhance
their system, such as combining multiple sensors including wearable cameras and
infrastructure sensors to robustify RGBD cameras in a real world environment.

Depth Maps-based Sequential Approaches As mentioned before, local
differential operators are not suitable for extracting features from depth maps,
resulting in difficulties in extracting reliable temporal correspondences. Therefore
only few approaches have explored the possibility of explicitly modeling temporal
dynamics from depth maps. This line of research lies in between pure depth map-
based methods and skeleton-based methods. They try to design features from
which reliable temporal motion can be extracted, while skeletons are one of the
most natural features that embed such information.

Inspired by the great success of silhouette based methods developed for vi-
sual data, Jalal et al. [19] extract depth silhouettes to construct feature vectors.
Figure 7 shows the overall flow of their proposed pipeline. The key idea is to
apply R transform [20] on the depth silhouette to obtain compact shape repre-
sentation reflecting time-sequential profiles of the activities. PCA is then used
for dimension reduction and Linear Discriminant Analysis is adopted to extract
most discriminant vectors as in [21]. Similar to most sequential methods for vi-
sual data, HMM is utilized for recognition. Experiments were performed on 10
daily home activities collected by the authors, each with 15 video clips. Upon
this dataset, a recognition rate of 96.55% was achieved.

Together with the skeleton-based methods that will be studied in Section 2.3,
the depth map-based approaches are summarized in Table 2 and Table 3.

2.3 Skeleton-based Approaches

The study of skeleton-based activity recognition dates back to the early work
by Johansson [23], which demonstrated that a large set of actions can be recog-
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Fig. 8. (a) Example of a typical human skeleton used for recognition. (b) Example of
a typical hierarchy of human body parts in a tree structure as in [22] c©2010 Elsevier

.

nized solely from the joint positions. This concept has been extensively explored
ever since. In contrast to the depth maps-based methods, the majority of the
skeleton-based methods model temporal dynamics explicitly. One main reason
is the natural correspondence of skeletons across time, while this is difficult to
establish for general visual and depth data. There are mainly three ways to ob-
tain skeletons: active motion capture (MoCap) systems, monocular or multi-view
color images and single view depth maps [24, 25]. One difference worth mention-
ing is the degree of embedded noise. Overall the MoCap data is the cleanest
compared to the other two. A multi-view setup is usually adopted for color im-
ages, and therefore produces more stable skeleton estimations than those from
monocular depth maps. Early methods were mostly tested on MoCap data and
skeletons from multi-view image data; while more recent work operates more on
noisy skeleton data from monocular depth maps, mainly due to its simple setup.
In the following, we first discuss sequential approaches, followed by space time
volume approaches.

Skeleton-based Sequential Approaches Though we discuss mainly recent
research in this study, the seminal work by Campbell and Bobick [26] is still
worth mentioning. They represent human actions as curves in low-dimensional
phase spaces obtained via projection of 3d joint trajectories. The phase space is
defined with each axis being an independent parameter of the body, for example
ankle-ankle, or its first derivative. A static pose is interpreted as a point in the
phase space, while an action forms a curve. Multiple 2d subspaces are chosen
via supervised learning paradigm and the action curves are projected onto these
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spaces as the action feature. A given actions is projected as a set of points and
recognized by verifying whether they are on certain action curves. However, due
to their cubic polynomial fitting of the projected curves, only simple movements
can be recognized. In particular, they succeeded in recognizing various ballet
dance moves. Notice that dynamics are not explicitly considered for their recog-
nition, though such information is embedded in the curve representation. Due
to the phase space representation, their method is both view invariant and scale
invariant.

Similar to the idea of 2d subspace selection above, Lv et al. [27] designed a set
of (spatially) local features based on single joints or combinations of small sets
of joints. Their observations suggest that using solely the full pose vector might
cause loss of some relevant information and reduce the discriminative power.
They consider three types of motions that involve motions of different primary
body parts: {leg+torso, arm, head}. In the end, they construct a 141 dimen-
sional feature vector from seven types of features including the full pose vector.
The skeleton is pre-normalized to avoid dependence on initial body orientation
and body size variations. An HMM is built for each feature and action class to
model the temporal dynamics. A key novelty of their method is to treat each of
the HMM models as a weak classifier and combine them with the multi-class Ad-
aBoost classifier [28] to significantly increase the discriminative power. Besides,
they propose a method using dynamic programming to extract from a contin-
uous video the segment that involves an activity considered. They tested their
method on two datasets: a set of 1979 MoCap sequences with 243,407 frames in
total, collected from the internet, and a set of annotated motion sequences [29].
For the first dataset, they achieved recognition rates of {92.3%, 94.7%, 97.2%}
for the three classes of actions separately when half of the data was used as
training data, and {88.1%, 91.9%, 94.9%} when the training data was reduced
to 1/3. Noticeably, a 30% gain was reached via the use of AdaBoost in this test.
A recognition rate of 89.7% was achieved for the second dataset, which is seg-
mented by their proposed method and thus more difficult. Overall their method
has achieved promising results with the small classes of actions considered. How-
ever, in reality many human actions involve motions of the entire body, such as
dancing, and it is not clear how well this method can be generalized to deal with
such complex actions.

The recent work by Xia et al. [21] proposed a feature called Histogram of 3d
Joint Locations (HOJ3D) that essentially encodes spatial occupancy information
relative to the skeleton root, i.e. hip center. Towards this end, they define a
modified spherical coordinate system on the hip center and partition the 3d
space into n bins, as shown in Figure 9 (a) and (b) respectively. Radial distance
is not considered in this spherical coordinate system to make it scale-invariant.
Different from other methods that also utilize spatial occupancy information that
make binary decision, such as [14] and [9], they perform a probabilistic voting
to determine the fractional occupancy, as demonstrated in Figure 9(c). In order
to extract dominant features, Linear Discriminant Analysis is applied to reduce
the dimensionality from n to (#Class−1). Vector Quantization is performed via
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Fig. 9. Reference coordinates of HOJ3D (a) and spherical coordinate system for joint
location binning used in [21]. (c) The probabilistic voting for spatial occupancy via a
Gaussian weighting function in [21]. c©2012 IEEE

K-means to discretize the continuous vectors obtained from the previous step,
and discrete HMM is adopted to model the dynamics and recognize actions.
They tested their approach on both their own dataset and the MSR Action3D
dataset [8]. Experiments on the MSR Action3D Dataset [8] showed that their
method outperformed [8]. However, the heavy reliance on the hip joint might
potentially jeopardize their recognition accuracy, due to the noise embedded in
the estimated hip joint location. Currently the estimation of this joint with [25]
is not very reliable, especially when the subject is not facing towards the camera.

The above-mentioned methods are mostly limited to single human actions,
due to lack of a model of the motion hierarchy. By contrast, Koppula et al. [30,
31] explicitly consider human-object interactions. They aimed at joint activity
and object affordance labeling from RGBD videos as illustrated in Figure 10.
They defined an MRF over the spatio-temporal sequence with two kinds of
nodes, namely objects nodes and sub-activity nodes, and edges representing the
relationships between object affordances, their relations with sub-activities, and
their evolution over time. The explicit modeling of the motion hierarchy enables
this method to handle complex activities that involve human-object interactions.
Features are defined for both classes of nodes. The object node feature is a
vector representing the object’s location in the scene and how it changes within
the temporal segment including the transformation matrix and displacement of
the corresponding points from the SIFT tracker. The sub-activity node feature
map gives a vector of features computed using the human skeleton information
obtained from a skeleton tracker on RGBD video. By defining the feature vectors,
they then train a multi-class SVM classifier on the training data. Given the model
parameters, the inference problem is to find the best labeling for the input video.
Its equivalent formulation has a linear relaxation which can be solved efficiently
using a graph-cut method. Evaluations are conducted based on the Cornell 60
dataset [32] and a new dataset acquired by the authors, named Cornell 120.
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Fig. 10. The MRF graph of [33]. Different types of nodes and relationships modeled in
part of the cleaning objects activity comprising three sub-activities: reaching, opening
and scrubbing. c©2012 IEEE.

Similar to the work of Koppula et al. [30, 31], Sung et al. [34, 35] also explic-
itly model the activity hierarchy, however, with a two-layer Maximum Entropy
Markov Model (MEMM) [36]. The lower layer nodes of the MEMM represent
sub-activities such as “lifting left hand”, while higher level nodes represent more
general and complex activities such as “pouring water”. The features used in
their work consist of four components. The first one are body pose features
based on joint orientations that are transformed to the local coordinate system
of torso to remove view dependency. The angles are represented as quaternions to
avoid the well-known gimbal lock phenomenon when using Euler angles. Besides,
the angle between each foot and the torso is explicitly emphasized to tell apart
sitting poses from standing poses. The second component consists of the posi-
tions of the hands relative to the torso and the head, due to the discriminative
power of hand positions. The third considers the motion of joints with a tempo-
rally sliding window. Besides these skeleton features, they incorporate image and
point cloud features as the last component. Specifically, Histogram of Oriented
Gradients (HOG) [37] descriptors are used on both RGB and depth data. A key
component of their model is dynamic association of the sub-activities with the
higher-level activities. In general, they do not assume that the input videos are
segmented. Instead, they use GMM to group the training data into clusters that
represent sub-activities and utilize the proposed probabilistic model to infer an
optimal association of these two layers on-the-fly. Experiments are conducted
based on the dataset acquired by the authors.

The work by Wang et al. [9] also utilizes both skeleton and point cloud in-
formation. The key idea is that some actions differ mainly due to the objects
in interactions, while skeleton information is not sufficient in such cases. To-
wards this end, they introduced a novel actionlet ensemble model to represent
each action and capture the intra-class variance via occupancy information, as
illustrated in Figure 11. In terms of skeleton information, one important ob-
servation made by them is that the pairwise relative positions of the joints are
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Fig. 11. The actionlet framework proposed by Wang et al. [9] c©2012 IEEE

more discriminative than the joint positions themselves. Interactions between
humans and environmental objects are characterized by Local Occupancy Pat-
terns (LOP) at each joint. The LOP features are computed based on the 3d
point cloud around a particular joint. The local space of each joint is discretized
using a spatial grid as shown in Figure 11. Moreover, they concatenate both
feature vectors and apply Short Fourier Transform to obtain the coefficients as
the Fourier Temporal Pyramid features at each joint. The Fourier Temporal
Pyramid is insensitive to temporal misalignment and robust to noise, and also
can characterize the temporal structure of the actions. An actionlet is defined as
a conjunctive structure on the base features (Fourier Pyramid features). They
learn the discriminative actionlet by iteratively optimizing parameters through
a generic SVM solver and obtain an SVM model defining a joint feature map on
the data and labels as a linear output function. Once they have training pairs,
they employed a mining algorithm to output a discriminative actionlet pool
which contains the actionlets meeting the criteria: having a large confidence and
a small ambiguity. They evaluated their method using CMU MoCap dataset,
MSR Action3D Dataset [8] and a new dataset named MSR Daily Activity 3D.
Experiments demonstrated the superior performance of their method compared
to other state-of-the-art methods.

A more general approach has been proposed by Yao et al. [38] where skeleton
motion is encoded by relational pose features [39], as shown in Figure 12. These
features describe geometric relations between specific joints in a single pose or
a short sequence of poses. For action recognition, a Hough forest [40] has been
used. Furthermore, a system for coupling the closely intertwined tasks of ac-
tion recognition and pose estimation is presented. Experiments on a multi-view
kitchen dataset [41] indicate that the quality of estimated poses with an average
error between 42mm-70mm is sufficient for reliable action recognition.

Similar to the depth maps based category, the sequential methods usually
require a larger set of training data. However, the explicit modeling of motion
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(a) joint distance (b) plane (c) normal plane (d) velocity (e) normal velocity

Fig. 12. Relational pose features [38]. (a) Euclidean distance between two joints (red).
(b) Distance between a joint (red) and a plane (green) defined by three joints. (c)
Distance between a joint (red) and a plane (green) defined by one joint and the normal
direction of two joints (black). (d) Velocity of a joint (red) in the direction of two joints
(black). (e) Velocity of a joint in normal direction of the plane.

Fig. 13. The EigenJoints features developed by Yang et al. [33] c©2012 IEEE

dynamics provide the potential to capture complex and general activities. A
major difference is that the dynamics are well defined due to exact semantic
definition of joints.

Skeleton-based Space Time Volume Approaches The space time volume
approaches using skeleton information usually extract global features from the
joints, sometimes combined with point cloud data. This line of research is rela-
tively new and only a few methods lie in this category.

Yang et al. [33] developed the EigenJoints features from RGBD sequences
as shown in Figure 13. The features include posture features fcc, motion fea-
tures fcp and offset features fci. The posture and motion features encode spatial
and temporal configuration with pair-wise joint differences in single frames and
between consecutive frames, respectively. The offset features represent the differ-
ence of a pose with respect to the initial pose with the assumption that the initial
pose is generally neutral. They normalize the three channels and apply PCA to
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MSR Action 3D [8]
Gesture3D [10] MSR Daily Activity 3D [9]1

3
training 2

3
training cross subject

[8] 91.36% 94.2% 74.7% - -

[13] 96.8% 98.25% 84.8% - -

[14] - - 86.2% 88.5% -

[15] 95.83% 97.37% 91.63% 89.20% -

[11] - - 88.89% 92.45% 80%

[16] - - - - -

[18] - - - - -

[19] 95.8% 97.78% 91.63% - -

[26] - - - - -

[27] - - - - -

[21] 96.2% 97.15% 78.97% - -

[30, 31] - - - - -

[34, 35] - - - - -

[9] - - 88.2% - 85.75%

[38] - - - - -

[33] 95.8% 97.77% 82.33% - -
Table 2. Accuracy of the reviewed activity recognition methods on the popular
datasets. Notice that the numbers are based on those reported in the correspond-
ing papers and the specific evaluation methodology can be slightly different even for
the same dataset.

reduce redundancy and noise to obtain the EigenJoints descriptor. For classifi-
cation, they adopt a Naive-Bayes-Nearest-Neighbor (NBNN) classifier due to its
simplicity. The video-to-class NN search is accelerated using a KD-tree. Their
evaluation on the MSR Action3D dataset [8] demonstrated the effectiveness of
their approach. One limitation of their method is the assumption about the ini-
tial pose. It is not clear how this assumption affects the recognition accuracy in
a more general context.

2.4 Summary

A summary of the methods reviewed above, both depth maps-based and skeleton-
based, are presented in Table 3. Since all the reviewed methods are capable of
dealing with both gestures and actions, only the capability of handling inter-
actions is enumerated. The accuracy of the reviewed methods on the popular
datasets are summarized in Table 2. Originally, Wang et al [8] performed three
set of tests on the MSR Action 3D Dataset. The first two use one third and two
thirds of the data for training, respectively, while the last one was designed for
a cross-subject test. This evaluation method is adopted by most of the works
that follow, as can be seen in the table. As the MSR Daily Activity Dataset
is relatively new, not many methods were evaluated on it. The methods that
were not evaluated on these datasets generally performed evaluations on other
datasets that are not listed here.
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Taxonomy Features Represen-
tation

Classifier View-
invariant

Scale-
invariant

Interac-
tions

[8] Depth+STV Bag of 3d
points

2d Projec-
tion

Action
graph

yes yes no

[13] Depth+STV STOP PCA Action
graph

yes yes no

[14] Depth+STV ROP Sparse
Coding

SVM yes yes no

[15] Depth+STV DMM + HOG SVM no yes no

[11] Depth+STV HON4D Histogram SVM yes yes no

[16] Depth+STV 4d Local
Spatio-
Temporal
Features

PCA Latent
Dirichlet
Allocation

no no yes

[18] Depth+STV SIFT-like PCA +
Bag of
Words

SVM no no yes

[19] Depth+Seq Depth silhou-
ettes + R
Transform

HMM no yes no

[26] Skel+Seq 3d joint tra-
jectories

Projection
in phase
spaces

Similar to
NN

yes yes no

[27] Skel+Seq Poses of sin-
gle and multi-
ple joints

HMM +
AdaBoost

yes yes no

[21] Skel+Seq HOJ3D Linear
Discrim-
inant
Analysis

HMM yes yes no

[30, 31] Skel+Seq Object and
Pose features

Multi-
class SVM

no no yes

[34, 35] Skel+Seq Pose features
+ HOG

MEMM yes yes no

[9] Skel+Seq LOP Actionlet SVM yes yes yes

[38] Skel+Seq Relational
Pose Features

Hough
Forest

yes yes no

[33] Skel+STV EigenJoints PCA NBNN yes yes no
Table 3. Summary of methods for action recognition based on data from depth sensors.
Here “Seq” refers to “Sequential”, “STV” refers to “Space Time Volume” and “Skel”
means “Skeleton”.

In conclusion, with the excellent opportunities provided by the low-cost depth
sensors for activity recognition, promising results have been achieved as evi-
denced in recent research work. The unique characteristics of the depth sensor
data inspire the researchers to investigate effective and efficient approaches for
this task, partly based on the traditional work on regular visual data. One line of
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ongoing research attempts to design more discriminative and meanwhile compact
feature vectors from depth and skeleton data to describe human activities. An-
other possible direction is to extend the current methods to deal with more com-
plicated activities, such as interactions or group activities. In this case, existing
works that operate on regular visual data might provide some good insights [4].

3 Face Motion

Human motion analysis is not restricted to full body motion, but can also be
applied to body parts like the face or the hands. In this section, we give an
overview of different approaches that capture head or facial motion at different
levels of details; see Figures 14, 18 and 19. The lowest level estimates the head
pose only, i.e., location and orientation of the head. Approaches for head pose
estimation are discussed in Section 3.1. Facial feature points or low-resolution
shape models provide more information and are often extracted for applications
like face recognition, speech recognition or analysis of facial expressions. While
Section 3.2 discusses works for extracting facial feature points, Section 3.3 dis-
cusses methods that aim at capturing all details of facial motion. The latter is
mainly used in the context of facial animations. Parts of this section appeared
in [42].

3.1 Head Pose Estimation

With application ranging from face recognition to driver drowsiness detection,
automatic head pose estimation is an important problem. Since the survey [43]
gives already an excellent overview of approaches until the year 2007, we focus
on more recent approaches for head pose estimation that appeared in 2007 or
later. Although the focus is head pose estimation from depth data, we give
a broader view that also includes methods that estimate the head pose from
RGB data like images or videos. Methods based on 2d images can be subdivided
into appearance-based and feature-based approaches, depending on whether they
analyze the face as a whole or instead rely on the localization of some specific
facial features for head pose estimation.

RGB Appearance-based Methods Appearance-based methods usually dis-
cretize the head pose space and learn separate detectors for subsets of poses [44,
45]. Chen et al. [46] and Balasubramanian et al. [47] present head pose estima-
tion systems with a specific focus on the mapping from the high-dimensional
space of facial appearance to the lower-dimensional manifold of head poses. The
latter work considers face images with varying poses as lying on a smooth low-
dimensional manifold in a high-dimensional feature space. The proposed Biased
Manifold Embedding uses the pose angle information of the face images to com-
pute a biased neighborhood of each point in the feature space, prior to deter-
mining the low-dimensional embedding. In the same vein, Osadchy et al. [48]
instead use a convolutional network to learn the mapping, achieving real-time
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performance for the face detection problem, while also providing an estimate of
the head pose. A very popular family of methods use statistical models of the
face shape and appearance, like Active Appearance Models (AAMs) [49], multi-
view AAMs [50] and 3d Morphable Models [51, 52]. Such methods, however,
focus more on tracking facial features rather than estimating the head pose. In
this context, the authors of [53] coupled an Active Appearance Model with the
POSIT algorithm for head pose tracking.

RGB Feature-based Methods Feature-based methods rely on some specific
facial features to be visible, and therefore are sensitive to occlusions and to large
head rotations. Vatahska et al. [54] use a face detector to roughly classify the
pose as frontal, left, or right profile. After this, they detect the eyes and nose tip
using AdaBoost classifiers. Finally, the detections are fed into a neural network
which estimates the head orientation. Similarly, Whitehill et al. [55] present a
discriminative approach to frame-by-frame head pose estimation. Their algo-
rithm relies on the detection of the nose tip and both eyes, thereby limiting the
recognizable poses to the ones where both eyes are visible. Morency et al. [56]
propose a probabilistic framework called Generalized Adaptive View-based Ap-
pearance Model integrating frame-by-frame head pose estimation, differential
registration and keyframe tracking.

Head Pose Estimation from Depth or 3d In general, approaches relying
solely on 2d images are sensitive to illumination changes and lack of distinctive
features. Moreover, the annotation of head poses from 2d images is intrinsically
problematic. Since 3d sensing devices have become available, computer vision
researchers have started to leverage the additional depth information for solving
some of the inherent limitations of image-based methods. Some of the recent
works thus use depth as primary cue [57] or in addition to 2d images [58, 59, 60].

Seemann et al. [60] presented a neural network-based system fusing skin color
histograms and depth information. It tracks at 10 fps but requires the face to be
detected in a frontal pose in the first frame of the sequence. The approach in [61]
uses head pose estimation only as a pre-processing step to face recognition, and
the low reported average errors are only calculated on faces of subjects that
belong to the training set. Still in a tracking framework, Morency et al. [59] use
instead intensity and depth input images to build a prior model of the face using
3d view-based eigenspaces. Then, they use this model to compute the absolute
difference in pose for each new frame. The pose range is limited and manual
cropping is necessary. In [58], a 3d face model is aligned to an RGB-depth input
stream for tracking features across frames, taking into account the very noisy
nature of depth measurements coming from commercial sensors.

Considering instead pure detectors on a frame-by-frame basis, Lu and Jain [62]
create hypotheses for the nose position in range images based on directional max-
ima. For verification, they compute the nose profile using PCA and a curvature-
based shape index. Breitenstein et al. [57] presented a real-time system working
on range scans provided by the scanner of [63]. Their system can handle large
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Fig. 14. Head pose tracking with a head template [64]. A user turns the head in front
of the depth sensor, the scans are integrated into a point cloud model [69] and a generic
template is fit to it using graph-based non-rigid ICP [70]. The personalized template
is used for rigid tracking.

pose variations, facial expressions and partial occlusions, as long as the nose re-
mains visible. Their method relies on several candidate nose positions, suggested
by a geometric descriptor. Such hypotheses are all evaluated in parallel on a
GPU, which compares them to renderings of a generic template with different
orientations. Finally the orientation which minimizes a predefined cost function
is selected. Breitenstein et al. also collected a dataset of over 10k annotated range
scans of heads. The subjects, both male and female, with and without glasses,
were recorded using the scanner of [63] while turning their heads around, trying
to span all possible yaw and pitch rotation angles they could. The scans were
semi-automatically annotated by a template-based tracking approach for head
pose estimation [64] as illustrated in Figure 14. The tracker requires a user-
specific head model that has been acquired before recording the dataset. The
same authors also extended their system to use lower quality depth images from
a stereo system [65].

While GPUs allow the evaluation of many hypotheses in real-time, they are
not available for embedded systems where power consumption matters. In order
to achieve real-time performance without the need of a GPU and to be robust to
occlusions, a random forests framework for head pose estimation from depth data
has been employed in [66]. The approach is illustrated in Figure 15. In [67], the
approach has been further extended to handle noisy sensor data and a dataset
with annotated head pose has been collected. The dataset comprises 24 sequences
of 20 different subjects (14 men and 6 women, 4 subjects with glasses) that
move their heads while sitting about 1 meter away from a Kinect sensor. Some
examples of the dataset are shown in Figure 16. The biggest advantage of depth
data for head pose estimation in comparison to 2d data is the simplicity of
generating an abundance of training data with perfect ground truth. In [66],
depth images of head poses are synthetically generated by rendering the 3d
morphable model of [68].
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(a) Training data (b) Regression forest (c) Pose prediction

Fig. 15. Head pose estimation with regression forests [66]. (a) A head model is used
to generate a large set of training data. (b) Based on the training data, a forest of
regression trees is trained. Each tree takes a depth patch as input and regresses the
pose parameters. (c) The regressed values of each patch can be considered as votes for
the pose parameters. The final estimate is obtained by mean-shift.

Fig. 16. Database for benchmarking head pose estimation from depth data [67]. The
green cylinder represents the estimated head pose, while the red one encodes the ground
truth.

3.2 Facial Feature Detection

Facial Feature Detection from 2d Data Facial feature detection from stan-
dard images is a well studied problem, often performed as preprocessing for face
recognition. Previous contributions can be classified into two categories, depend-
ing on whether they use global or local features. Holistic methods, e.g., Active
Appearance Models [49, 71, 72], use the entire facial texture to fit a generative
model to a test image. As discussed in Section 3.1, they can also be used for
head pose estimation. They are usually affected by lighting changes and a bias
towards the average face. The complexity of the modeling is an additional issue.
Moreover, these methods perform poorly on unseen identities [73] and cannot
handle low-resolution images well.

In recent years, there has been a shift towards methods based on independent
local feature detectors [74, 75, 76, 77]. These detectors are discriminative models
of image patches centered around facial landmarks. To improve accuracy and
reduce the influence of inaccurate detections and false positives, global models
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of the facial features configuration like pictorial structures [78, 79] or Active
Shape Models [80] can be used.

Facial Feature Detection from 3d Data Similar to the 2d case, methods
focusing on facial feature localization from range data can be subdivided into
categories using global or local information. Among the former class, the authors
of [81] deform a bi-linear face model to match a scan of an unseen face in different
expressions. Yet, the paper’s focus is not on the localization of facial feature
points and real-time performance is not achieved. Also Kakadiaris et al. [82]
non-rigidly align an annotated model to face meshes. However, constraints need
to be imposed on the initial face orientation. Using high quality range scans,
Weise et al. [83] presented a real-time system that is capable of tracking facial
motion in detail, but requires personalized templates. The same approach has
been extended to robustly track head pose and facial deformations using RGB-
depth streams provided by commercial sensors like the Kinect [64].

Most works that try to directly localize specific feature points from 3d data
take advantage of surface curvatures. For example, the authors of [84, 85, 86] all
use curvature to roughly localize the inner corners of the eyes. Such an approach
is very sensitive to missing depth data, particularly for the regions around the
inner eye corners that are frequently occluded by shadows. Also, Mehryar et
al. [87] use surface curvatures by first extracting ridge and valley points, which
are then clustered. The clusters are refined using a geometric model imposing a
set of distance and angle constraints on the arrangement of candidate landmarks.
Colbry et al. [88] use curvature in conjunction with the Shape Index proposed
by [89] to locate facial feature points from range scans of faces. The reported
execution time of this anchor point detector is 15 seconds per frame. Wang et
al. [90] use point signatures [91] and Gabor filters to detect some facial feature
points from 3d and 2d data. The method needs all desired landmarks to be vis-
ible, thus restricting the range of head poses while being sensitive to occlusions.
Yu et al. [92] use genetic algorithms to combine several weak classifiers into a 3d
facial landmark detector. Fanelli et al. [42] proposed a real-time system that re-
lies on random forests for localizing fiducials. The system is shown in Figure 17.
Ju et al. [93] detect the nose tip and the eyes using binary neural networks, and
propose a 3d shape descriptor invariant to pose and expression.

The authors of [94] propose a 3d Statistical Facial Feature Model (SFAM),
which models both the global variations in the morphology of the face and the
local structures around the landmarks. The low reported errors for the localiza-
tion of 15 points in scans of neutral faces come at the expense of processing time:
over 10 minutes are needed to process one facial scan. In [95], fitting the pro-
posed PCA shape model containing only the upper facial features, i.e., without
the mouth, takes on average 2 minutes per face.

For evaluating facial feature detectors on depth data, there are two datasets
available. BU3DFE [97] contains 100 subjects (56 females and 44 males) posing
six basic expressions plus neutral in front of a 3d face scanner. Each of the
six prototypic expressions (happiness, disgust, fear, angry, surprise and sadness)
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Fig. 17. Real-time facial feature localization using depth from a structured light system
as input [42].

Fig. 18. Successfully localized facial features using the approach [42] on some test scans
from the B3D(AC)2 database [96] (left) and the BU3DFE dataset [97] (right).

includes four levels of intensity, i.e., there are 25 static 3d expression models for
each subject, resulting in a total of 2500 faces. Each face is annotated with 83
facial points. B3D(AC)2 [96] comprises over 120k depth images and includes 14
subjects, 8 females and 6 males, repeating sentences from 40 movie sequences,
both in a neutral and in an induced emotional state.

3.3 Facial Performance Capture

Facial performance capture goes beyond simple shape models or feature point
detection and aims at capturing the full geometry of the face, mainly for facial
animations. A typical application is performance-based facial animation where
the non-rigid surface of the face is tracked and the motion is transferred to a
virtual face [98, 99]. Most of the work has focused so far on the acquisition
of high-quality data using structured light systems [100, 101, 102, 103, 104] or
passive multi-camera systems [105, 106, 101, 107] in controlled setups. These
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(a) Model generation (b) Real-time capture and facial animation

Fig. 19. (a) Data from a depth sensor is used to build a user-specific blendshape
model. (b) Having build the model, the motion can be transferred to a virtual head in
real-time. c©2013 Faceshift AG http://www.faceshift.com

methods propose different acquisition setups that are optimized for acquisition
time, acquisition accuracy, or budget.

There are a few works that go beyond capturing facial motion in studio
environments. The approach [108] uses a time-of-flight camera to estimate a few
basic facial action units based on the Facial Action Coding System (FACS). The
method fits a high-resolution statistical 3d expression morph model to the noisy
depth data by an iterative closest point algorithm and regresses the action units
from the fitted model. The method [83] achieves real-time performance-based
facial animation by generating a user-specific facial expression model offline.
During tracking the PCA components of the expression model are estimated
and transferred to a PCA model of a target face in real-time. In [64], a robust
method based on user-specific blendshapes has been proposed for real-time facial
performance capture and animation. In contrast to most other works for facial
animation, the approach also works with noisy depth data. The approach is
illustrated in Figure 19.

3.4 Summary

Capturing facial motion from depth data has progressed fast in the last years and
several real-time systems for different applications have been developed. While
for some applications head pose estimation might be sufficient, more details
like facial feature points, facial action units, or full geometry can be captured.
Interestingly, the richer output does not necessarily require much higher compu-
tational cost, still allowing real-time performance, but it requires more effort for
acquiring training data or an additional offline acquisition process, e.g., to ac-
quire a user-specific model. While the discussed methods already perform well in
terms of runtime and accuracy, there is further room for improving the accuracy
without compromising runtime. For evaluation, several datasets have been re-
leased as shown in Table 4. Although each dataset has been recorded for a specific
task like head pose estimation [57, 42], facial expression recognition [97, 109, 110],

http://www.faceshift.com
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Dataset Annotation Data Subjects

ETH Face Pose Range Image [57] head pose 10k depth 20

Biwi Kinect Head Pose [42] head pose 15k RGBD 20

Binghamton 3D Facial Expression [97] 6 facial expressions, 3k 3d models 100
3 facial points

Bosphorus Database [109] 24 facial points, FACS 5k 3d models 105

3D Dynamic Facial Expression [110] 6 facial expressions, 60k 3d models 101
83 facial points

Texas 3D Face Recognition [111] 25 facial points 1k RGBD 105

Biwi 3D Audiovisual Corpus [96] face model, emotions, 120k RGBD 14
segmented speech

UMB 3D Face [112] 7 facial points 1k RGBD 143

EURECOM Kinect Face [113] 6 facial points 1k RGBD 52
Table 4. Datasets for evaluating depth-based approaches for head pose estimation and
facial feature detection

face recognition [111, 112, 113], or audiovisual speech recognition [96], they can
be also used for benchmarking methods for other tasks. Current datasets and
methods assume that the head is clearly visible, the handling of crowded scenes
for instance with many faces has not been addressed so far.

4 Hand Motion

Capturing the motion of hands shares many similarities with full body pose
estimation. However, hands impose some additional challenges like uniform skin
color, very large pose variations and severe occlusions that are even difficult to
resolve from depth data. Since hands interact with other hands or objects nearly
all the time, capturing hand motion is still a very challenging task. Parts of this
section appeared in [114].

4.1 Hand Pose Estimation

In the survey [115], various methods for hand pose estimation have been reviewed
in the context of human-computer interaction. We also follow the taxonomy used
in [115] that splits the approaches in discriminative methods that use classifi-
cation or regression to estimate the hand pose from image data and generative
methods that use a hand model to recover the hand pose.

The model-based approaches mainly differ in the used cues and techniques for
solving the problem. The most commonly used image features are silhouettes and
edges, but also other cues like shading, color, or optical flow have been used [115].
For instance, edges, optical flow and shading information have been combined
in [116] for articulated hand tracking. In [117], a method based on texture and
shading has been proposed. A very important cue is depth [118, 119] that has
been recently revisited in the context of depth sensors [120].



32

(a) Articulated Hand Model (b) Connected Parts (c) Labeled Parts

Fig. 20. Different models for hand pose estimation: (a) Detailed 3d mesh with under-
lying skeleton [114] (b) Connected body parts [127] (c) Labeled surface for training a
body part detector [129]

In order to recover the hand pose based on some cues, several techniques
have been proposed. One of the first methods for 3d hand pose estimation used
local optimization [121], which is still a very popular method due to its efficiency,
but it also requires a careful design of the objective function to avoid that the
method gets stuck in local minima [114, 117]. Other methods rely on filtering
techniques like Kalman filter [122] or particle filter [123]. While particle filtering
and local stochastic optimization have been combined in [119] to improve the
performance of filtering techniques in the high-dimensional space of hand poses,
[124, 125] proposed to reduce the pose space by using linear subspaces. The
methods, however, considered only very few hand poses. Other methods rely on
belief propagation [126, 127] or particle swarm optimization [128].

Depending on the method, the used hand models also differ as shown in
Figure 20. The highest accuracy is achieved with user-specific hand models,
e.g., [114, 130]. These models need to be acquired offline, similar to user-specific
head models, but anatomical properties like fix limb length are retained during
tracking. More flexible are graphical models that connect limbs modeled by shape
primitives and use often Gaussian distributions to model the allowed distance
of two limbs, e.g., [126, 127]. For each limb a likelihood is computed and the
best hand configuration is inferred from the graphical model connecting the
limbs. A hand model based on a self-organizing map [131] is discussed in the
chapter Gesture Interfaces with Depth Sensors.

Discriminative approaches like [132, 133, 134] do not require an explicit hand
model, but learn a mapping from image features to hand poses from a large set of
training data. Although these methods process the frames independently, tem-
poral consistency can be enforced [135, 136, 137]. While discriminative methods
can recover from errors, the accuracy and type of hand poses that can be han-
dled depends on the training data. Discriminative approaches that process the
full hand are therefore not suitable for applications that require accurate hand
poses of a-priori unknown actions. However, instead of learning a mapping for
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(a) Skeleton (b) Hand Model (c) Skeleton (d) Hand Model

Fig. 21. The relations between hands and object classes can be modeled to synthesize
hand poses or hand-object animations [138].

the full hand, also a mapping only for body parts can be learned [129] as shown
in Figure 20(c). Breaking the hand into parts has the advantage that a larger
variation of poses can be handled. Similar approaches have been successfully
applied to human pose [3] or head pose estimation [66].

Recently, the focus has been on hand motion capture in the context of in-
teractions. [127] has considered hand tracking from depth data in the context
of object manipulation. While the objects were originally treated as occluders,
[139] proposed to learn an object dependent hand pose prior to assist tracking.
The method assumes that object manipulations of similar objects have been
previously observed for training and exploits contact points and geometry of the
objects. Such dependencies can also be used to create hand animations [140, 141]
as shown in Figure 21. In the context of object grasping, a database of 10 000
hand poses with and without grasped objects has been created to recover the
hand pose from images using nearest neighbor search [136]. Recently, it has been
proposed to track the manipulated object and the hand at the same time to con-
strain the search space using collision constraints [142]. The object is assumed
to be a shape primitive like a cylinder, ellipsoid or box whose parameters are
estimated. In [130], particle swarm optimization (PSO) has been applied to hand
tracking of two interacting hands from depth data.

Instead of using off-the-shelf depth sensors, some approaches have focused on
the sensor design in the context of human-computer interaction (HCI) applica-
tions. For instance, Leap Motion5 developed a controller that allows to capture
the motion of finger tips with high accuracy. While the volume that can be
captured by the controller is very small, a wrist-worn sensor for hand pose es-
timation has been proposed in [143]. In [144], RGBD data is used to improve a
marker-based system. A more detailed overview of approaches for HCI, includ-
ing commercial systems, is given in the chapter Gesture Interfaces with Depth
Sensors.

4.2 Hand Gesture Recognition

Even if the resolution of the hands is too small to estimate the full articulated
hand, the gesture of the hand can still be estimated given a suitable training set.

5http://www.leapmotion.com

http://www.leapmotion.com
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(a) (b) (c) (d) (e) (f) (g)

Fig. 22. Alphabet (A-G) of the American sign language captured with a ToF camera

In this section, we give an overview of different methods for recognizing hand
gestures, in particular letters of a sign language, as shown in Figure 22. Parts of
this section appeared in [140].

Recognizing signs of visual-gestural languages like the American sign lan-
guage (ASL) is a very active field [145, 146, 147, 148, 149, 150, 151]. For in-
stance, the SignSpeak project [152] aims at developing vision-based technology
for translating continuous sign language to text. It is also related to gesture
recognition from depth data and optional color data [153, 154, 155, 156, 157,
158, 159, 160, 161, 162], which is discussed in the chapter Gesture Interfaces
with Depth Sensors. While for gesture recognition usually only a small set of
distinctive gestures are used, the letters of a sign language are pre-defined and
not very distinctive in low resolution depth images. In the following, we struc-
ture the methods into user-specific systems, i.e., the systems are trained and
designed for a specific user, and general systems, i.e., the user does not provide
any training data:

User-specific systems Polish finger alphabet symbols have been classified in
[163] with an off-line setup. The input for each of the considered 23 gestures
consisted of a gray-scale image at a relatively high resolution and depth data
acquired by a stereo setup. In [164], a real-time recognition system has been
developed for Spanish sign language letters where a colored glove was used. The
real-time system [165] recognizes 46 gestures including symbols of the ASL. It as-
sumes constant lighting conditions for training and testing and uses a wristband
and special background for accurate hand segmentation. More recently, British
sign language finger spelling has been investigated in [166] where the specialty
is that both hands are involved in the 26 static gestures. Working on skin color,
it is assumed that the signer wears suitable clothing and the background is of
a single uniform color. The system recognizes also spelled words contained in a
pre-defined lexicon.

General systems Using a stereo camera to acquire 3d and color data, Takimoto
et al. [160] proposed a method for recognizing 41 Japanese sign language charac-
ters. Data was acquired from 20 test subjects and the achieved classifier runtime
is about 3 frames per second. Although the approach does not require special
background or lighting conditions, segmenting the hand, which is a challenging
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Method # of Gest. Setup Depth Resolution Markers Real-time

[165] 46 user-specific no 320x240 wristband yes

[159] 11 user-specific yes 160x120 yes

[163] 23 user-specific yes 320x240 black long sleeve no
768x576(gray)

[164] 19 user-specific no colored glove yes

[162] 6 user-specific yes 176x144 yes
640x480(rgb)

[140] 26 user-specific yes 176x144 yes

[157] 12 general yes 160x120 yes

[158] 6 general yes 176x144 yes

[156] 5 general yes 176x144 yes

[160] 41 general yes 320x240 wristband no
1280x960(rgb)

[167] 23 general no color glove yes

[168] 26 general no bounding box no

[169] 26 general no bounding box no

[140] 26 general yes 176x144 yes
Table 5. Overview of methods for recognizing hand gestures

task by itself, is greatly simplified by the use of a black wristband. Colored gloves
have been used in [167] for recognizing 23 symbols of the Irish sign language in
real-time. A method for recognizing the ASL finger alphabet off-line has been
proposed in [168]. Input data was acquired in front of a white background and
the hand bounding box was defined for each image manually. A similar setup has
been used in [169]. In [140], a method based on average neighborhood margin
maximation has been proposed that recognizes the ASL finger alphabet from
low-resolution depth data in real-time.

The methods are summarized in Table 5.

4.3 Summary

In contrast to activity recognition and facial motion capture, there is a lack of
publicly available datasets for benchmarking and comparing methods for hand
pose estimation. Even for RGB data, there are very few datasets that provide
ground-truth data [170]. While many depth datasets have been used for hand
gesture recognition or recognizing finger alphabet symbols, there is no dataset
available that has been consistently used. As shown in Table 5, many methods
use a different number of gestures or recording setups. In order to evaluate the
progress in this area, publicly available datasets with ground-truth data are
needed.
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5 Conclusion

Over the last years, a significant progress has been made in the field of human
motion analysis from depth data. The success is attested by commercial systems
that estimate full body poses for computer games, hand poses for gesture inter-
faces, or capture detailed head motions for facial animations. It is expected that
more approaches in the field will make the transition from the lab to a business.
The main advantages of developing applications for depth sensors compared to
purely 2d color sensors are (i) the better robustness to lighting conditions, at
least in indoor environments, (ii) the resolved scale-distance ambiguity of 2d
sensors, making it easier to develop real-time algorithms, (iii) the possibility
to synthesize an abundance of training data. Nevertheless, there are still many
research challenges that need to be addressed and that cannot be resolved by im-
proving only the data quality provided by the sensors. So far, the most successful
approaches for capturing full body motion or specific body parts like hands or
the head assume that the subjects are within a specific distance range to the
sensor. Dealing with a larger range of distances, however, requires to smoothly
blend between analyzing full body motion and the motion of body parts. If the
person is far away from the sensor, full body motion can be better analyzed
than facial motion. As soon as the person gets closer to the sensor, only parts
of the person remain visible and motion analysis is limited to the upper body,
hands, or the face. For some applications, even all aspects of human body lan-
guage need to be taken into account to understand the intend of the user. In
sign languages, for instance, it is not only hand gestures that matter, but also
the motion of the arms, facial expressions and the movements of the lips. Bring-
ing all these components of motion analysis together, which have been mainly
addressed independently, is a big challenge for the future. Another challenge is
motion analysis in the context of crowded scenes and interactions. While first
approaches address the problem of human-human or human-object interactions,
more work needs to be done in this area to achieve performances that are good
enough for real-world applications.
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