
POURHEYDARI : TAYLORSWIFTNET 1

TaylorSwiftNet: Taylor Driven Temporal
Modeling for Swift Future Frame Prediction
Supplemental Material

Saber Pourheydari*1

m.saberpourheydari@gmail.com

Emad Bahrami*1

bahrami@iai.uni-bonn.de

Mohsen Fayyaz*1, 2

mohsenfayyaz@microsoft.com

Gianpiero Francesca3

gianpiero.francesca@toyota-europe.com

Mehdi Noroozi4

m.noroozi@samsung.com

Juergen Gall1

gall@iai.uni-bonn.de

1 Computer Vision Group
University of Bonn
Bonn, Germany

2 Microsoft
Berlin, Germany

3 Toyota Motor Europe
Brussels, Belgium

4 Samsung AI
Cambridge, UK

* indicates equal contribution

In the following sections, we present additional ablation studies, more details of our
method, and a comparison to analytical derived derivatives.

1 Additional Ablation Studies

1.1 Recurrent DCBs
As mentioned in the paper, the DC blocks can also be implemented as recurrent DCBs
(RDCB). In contrast to DC blocks, RDC blocks share their weights. As shown in Table 1,
DC blocks perform slightly better. We also found that DC blocks are more stable during
training.

Method Moving MNIST Traffic BJ SST Human 3.6M
DCB 0.965 0.992 0.978 0.910

RDCB 0.964 0.971 0.977 0.906

Table 1: SSIM for models with DCBs and RDCBs.

1.2 Runtime Comparison
We report the runtime of our model for Human 3.6M in Tab. 2. We used an NVIDIA Titan
RTX GPU.
c© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 POURHEYDARI : TAYLORSWIFTNET

run-time (ms) Parameters (M) GMACs SSIM
PhyDNet [1] 30 11 76 0.901

ours 21 11 61 0.910

Table 2: Computation cost and runtime.

1st 2nd 3rd 4th

di sin/dt i 0.05077 −0.99871 −0.05077 0.99871
ours 0.05083 −0.99993 −0.05017 0.99012

di cos/dt i −0.9987 −0.0507 0.9987 0.0507
ours −0.9991 −0.0506 0.9900 0.0504

di exp/dt i 4.5722 4.5722 4.5722 4.5722
ours 4.5723 4.5726 4.5721 4.5730

Table 3: Comparing the 1st , 2nd , 3rd , and 4th order derivatives of three functions with the
estimated derivatives.

2 Comparison to Analytical Derivatives

For video data, the function FHt and thus the ground-truth terms of the Taylor series are
unknown. In order to analyze how accurately our network can learn the terms of the Taylor
series, we use three functions where we can analytically derive the derivatives. The results
in Table 3 demonstrate that the DC blocks are able to learn derivatives.

3 Implementation Details

3.1 Encoder and Decoder

We provide the details of the encoder and decoder for each dataset in Tables 4-7. The models
share common blocks. We define each convolutional layer as: [input channel, output chan-
nel], [kernel height, kernel width, kernel depth], [stride over height, stride over width, stride
over depth]. We also define each residual block as:

ResBlock =
[
[C,C], [3,3,3], [1,1,1]
[C,C], [3,3,3], [1,1,1]

]
Furthermore, Figures 3 and 4 visualize the baselines ‘Point Estimate (Expand)’ and ‘Point
Estimate (Flatten)’ from Table 2 of the paper.

3.2 Training

We use Adam [2] with a learning rate of 0.0001 to optimize the model through 4K epochs.
For the SST dataset, we train our model in 1K epochs. To control the learning rate, we use
a scheduler to reduce the learning rate by a factor of 0.5 in case of a plateau over the SSIM
metric on the training set. Following the previous state-of-the-art methods [1], we use MSE
as the loss function.

Citation
Citation
{Guen and Thome} 2020

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Guen and Thome} 2020

POURHEYDARI : TAYLORSWIFTNET 3

t=11.0 t=11.3 t=11.6 t=11.9 t=12.2 t=12.5 t=12.8 t=13.1 t=13.4 t=13.7 t=14.0

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=18 t=19 t=20

target

input

prediction
t=14.3 t=14.6 t=14.9 t=15.2 t=15.5 t=15.8 t=16.1 t=16.4 t=16.7 t=17.0 t=17.3

t=17.6 t=17.9 t=18.2 t=18.5 t=18.8 t=19.1 t=19.4 t=19.7 t=20.0 t=20.3 t=20.6

Figure 1: Predicting future frames at higher temporal resolution. Input are the 10 observed
frames and target are the future ground-truth frames. τ is increased by 0.3 instead of 1.

input

target

t=1 t=2 t=3 t=4

t=5 t=6 t=7 t=8

prediction

t=5 t+0.1 t+0.2 t+0.3 t+0.4 t+0.5 t+0.6 t+0.7 t+0.8 t+0.9

t=6 t+0.1 t+0.2 t+0.3 t+0.4 t+0.5 t+0.6 t+0.7 t+0.8 t+0.9

t=7 t+0.1 t+0.2 t+0.3 t+0.4 t+0.5 t+0.6 t+0.7 t+0.8 t+0.9

t=8 t+0.1 t+0.2 t+0.3 t+0.4 t+0.5 t+0.6 t+0.7 t+0.8 t+0.9

Figure 2: Predicting future frames at higher temporal resolution. Input are the 4 observed
frames and target are the future ground-truth frames. τ is increased by 0.1 instead of 1.

4 Forecasting at Different Temporal Resolutions

Since our model forecasts frames using a continuous representation, we do not need to stick
to the framerate of the observation. In Fig. 1, we show qualitative results on Moving MNIST
for the future temporal steps t+τ ∈ {11,11.3,11.6, ...,20.6}, i.e., we increase the framerate
by 1/0.3. Note that we do not re-train our model for this experiment. As it can be seen,
our TaylorSwiftNet smoothly predicts intermediate frames. The sharp digits and their accu-
rate location clearly demonstrate the continuous temporal modeling capability of our model.
We provide more qualitative results of the continuous temporal modeling capability of our
method for Human 3.6M in Fig. 2.

4 POURHEYDARI : TAYLORSWIFTNET

References
[1] Vincent Le Guen and Nicolas Thome. Disentangling physical dynamics from unknown factors for

unsupervised video prediction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

POURHEYDARI : TAYLORSWIFTNET 5

stage layer output size
raw - 1×10×64×64

E
ncoder

[1, 8], [1, 3, 3], [1, 1, 1] 8×10×64×64
[8, 16], [1, 3, 3], [1, 1, 1] 16×10×64×64
[16, 32], [1, 3, 3], [1, 2, 2] 32×10×32×32[32, 32], [1, 3, 3], [1, 1, 1]
[32, 64], [1, 3, 3], [1, 2, 2] 64×10×16×16
[64, 128], [1, 3, 3], [1, 1, 1]

128×10×16×16

[128, 128], [3, 3, 3], [1, 1, 1]
ResBlock2×2
ResBlock3×2
ResBlock4×2
ResBlock5×2

D
ecoder

[128, 64], [1, 3, 3], [1, 1, 1] 64×10×16×16
[64, 32], [1, 3, 3], [1, 2, 2] 32×10×32×32[32, 32], [1, 3, 3], [1, 1, 1]
[32, 16], [1, 3, 3], [1, 2, 2] 16×10×64×64
[16, 8], [1, 3, 3], [1, 1, 1] 8×10×64×64
[8, 1], [1, 3, 3], [1, 1, 1] 1×10×64×64

Table 4: Model architecture with a modified 3DResNet encoder for Moving MNIST.

stage layer output size
raw - 2×4×64×64

E
ncoder

[2, 32], [1, 3, 3], [1, 1, 1] 32×4×32×32
[32, 64], [1, 3, 3], [1, 2, 2] 64×4×16×16
[64, 128], [1, 3, 3], [1, 1, 1]

128×4×16×16

[128, 128], [3, 3, 3], [1, 1, 1]
ResBlock2×2
ResBlock3×2
ResBlock4×2
ResBlock5×2D

ecoder

[128, 64], [1, 3, 3], [1, 1, 1] 64×4×16×16
[64, 32], [1, 3, 3], [1, 2, 2] 32×4×32×32
[32, 2], [1, 3, 3], [1, 1, 1] 2×4×32×32

Table 5: Model architecture with a modified 3DResNet encoder for Traffic BJ.

6 POURHEYDARI : TAYLORSWIFTNET

stage layer output size
raw - 1×4×64×64

E
ncoder

[1, 16], [1, 3, 3], [1, 1, 1] 16×4×64×64
[16, 32], [1, 3, 3], [1, 2, 2] 32×4×32×32[32, 32], [1, 3, 3], [1, 1, 1]
[32, 64], [1, 3, 3], [1, 2, 2] 64×4×16×16
[64, 128], [1, 3, 3], [1, 1, 1]

128×4×16×16

[128, 128], [3, 3, 3], [1, 1, 1]
ResBlock2×2
ResBlock3×2
ResBlock4×2
ResBlock5×2

D
ecoder

[128, 64], [1, 3, 3], [1, 1, 1] 64×4×16×16
[64, 32], [1, 3, 3], [1, 2, 2] 32×4×32×32[32, 32], [1, 3, 3], [1, 1, 1]
[32, 16], [1, 3, 3], [1, 2, 2] 16×4×64×64
[16, 1], [1, 3, 3], [1, 1, 1] 1×4×64×64

Table 6: Model architecture with a modified 3DResNet encoder for SST.

stage layer output size
raw - 3×4×64×64

E
ncoder

[3, 16], [1, 3, 3], [1, 1, 1] 16×4×64×64
[16, 32], [1, 3, 3], [1, 1, 1] 32×4×64×64
[32, 64], [1, 3, 3], [1, 2, 2] 64×4×32×32[64, 64], [1, 3, 3], [1, 1, 1]
[64, 128], [1, 3, 3], [1, 2, 2] 128×4×16×16

[128, 256], [1, 3, 3], [1, 1, 1]

256×4×16×16

[256, 256], [3, 3, 3], [1, 1, 1]
ResBlock2×2
ResBlock3×2
ResBlock4×2
ResBlock5×2

D
ecoder

[256, 128], [1, 3, 3], [1, 1, 1] 128×4×16×16
[128, 64], [1, 3, 3], [1, 2, 2] 64×4×32×32[64, 64], [1, 3, 3], [1, 1, 1]
[64, 32], [1, 3, 3], [1, 2, 2] 32×4×64×64
[32, 16], [1, 3, 3], [1, 1, 1] 16×4×64×64
[16, 3], [1, 3, 3], [1, 1, 1] 3×4×64×64

Table 7: Model architecture with a modified 3DResNet encoder for Human 3.6M.

POURHEYDARI : TAYLORSWIFTNET 7

Encoder

D
ec

o
d

er

𝜏

1
x2

5
6

 F
C

Le
ak

y
R

eL
U

C
h

an
n

el
 w

is
e

C
o

n
ca

te
n

at
io

n

Le
ak

y
R

eL
U

Le
ak

y
R

eL
U

Tx
3

x3
 C

o
n

v

Ex
p

an
d1x256 256x16x16

512x16x16

1
x1

x1
 C

o
n

v

256x16x16

Figure 3: Architecture of the baseline ‘Expand’.

Encoder

D
ec

o
d

er

𝜏

1
x2

5
6

 F
C

Le
ak

y
R

eL
U

4
0

9
6

x4
0

9
6

 F
C

Le
ak

y
R

eL
U

(4
0

9
6

+2
5

6
)x

4
0

9
6

 F
C

Le
ak

y
R

eL
U

1
x3

x3
 C

o
n

vT
ra

n
s

Le
ak

y
R

eL
U

Le
ak

y
R

eL
U

3
x3

x3
 C

o
n

v

Le
ak

y
R

eL
U

3
x3

x3
 C

o
n

v

Le
ak

y
R

eL
U

3
x3

x3
 C

o
n

v

1
x3

x3
 C

o
n

vT
ra

n
s

Le
ak

y
R

eL
U

1
x3

x3
 C

o
n

vT
ra

n
s

Le
ak

y
R

eL
U

Figure 4: Architecture of the baseline ‘Flatten’.

