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Abstract

Temporal action segmentation approaches have been
very successful recently. However, annotating videos with
frame-wise labels to train such models is very expensive and
time consuming. While weakly supervised methods trained
using only ordered action lists require less annotation ef-
fort, the performance is still worse than fully supervised
approaches. In this paper, we propose to use timestamp su-
pervision for the temporal action segmentation task. Time-
stamps require a comparable annotation effort to weakly
supervised approaches, and yet provide a more supervisory
signal. To demonstrate the effectiveness of timestamp su-
pervision, we propose an approach to train a segmentation
model using only timestamps annotations. Our approach
uses the model output and the annotated timestamps to gen-
erate frame-wise labels by detecting the action changes. We
further introduce a confidence loss that forces the predicted
probabilities to monotonically decrease as the distance to
the timestamps increases. This ensures that all and not only
the most distinctive frames of an action are learned during
training. The evaluation on four datasets shows that mod-
els trained with timestamps annotations achieve compara-
ble performance to the fully supervised approaches.

1. Introduction
Analyzing and understanding video content is very im-

portant for many applications, such as surveillance or in-
telligent advertisement. Recently, several approaches have
been very successful in analyzing and segmenting activities
in videos [20, 24, 1, 29, 41]. Despite the success of the pre-
vious approaches, they rely on fully annotated videos where
the start and end frames of each action are annotated.

This level of supervision, however, is very time consum-
ing and hard to obtain. Furthermore, as the boundaries be-
tween action segments are usually ambiguous, this might
result in inconsistencies between annotations obtained from
different annotators. To alleviate these problems, many re-
searchers start exploring weaker levels of supervision in the
form of transcripts [3, 35, 25] or even sets [34, 11, 26]. For

Figure 1. For fully supervised action segmentation, each frame in
the training videos is annotated with an action label (top). This
process is time-consuming since it requires an accurate annotation
of the start and end frame of each action. To reduce the annotation
effort, we propose to use timestamps as supervision (bottom). In
this case, only one arbitrary frame needs to be annotated for each
action and the annotators do not need to search for the start and
end frames, which is the most time-consuming annotation part.

transcript-level supervision, the videos are annotated with
an ordered list of actions occurring in the video without the
starting and ending time of each action. Whereas for the
set-level supervision, only the set of actions are provided
without any information regarding the order or how many
times each action occurs in the videos.

While transcript-level and set-level supervision signifi-
cantly reduce the annotation effort, the performance is not
satisfying and there is still a gap compared to fully super-
vised approaches. In this paper, inspired by the recently in-
troduced timestamp supervision for action recognition [31],
we propose to use timestamp supervision for the action
segmentation task to address the limitations of the current
weakly supervised approaches. For timestamp supervision,
only one frame is annotated from each action segment as il-
lustrated in Fig. 1. Such timestamps annotations can be ob-
tained with comparable effort to transcripts, and yet it pro-
vides more supervision. Besides the ordered list of actions
occurring in the video, timestamps annotations give par-
tial information about the location of the action segments,
which can be utilized to further improve the performance.
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Given the timestamps annotations, the question is how to
train a segmentation model with such level of supervision.
A naive approach takes only the sparsely annotated frames
for training. This, however, ignores most of the informa-
tion in the video and does not achieve good results as we
will show in the experiments. Another strategy is to iter-
ate the process and consider frames with high confidence
scores near the annotations as additional annotated frames
and include them during training [31]. Furthermore, frames
that are far away from the annotations can be considered as
negative samples [28]. For temporal action segmentation,
which is comparable to semantic image segmentation, how-
ever, all frames need to be annotated and there are no large
parts of the video that can be used to sample negative exam-
ples. Furthermore, relying only on frames with high confi-
dence discards many of the video frames that occur during
an action and focuses only on the most distinctive frames of
an action, which can be sufficient for action recognition or
detection but not for action segmentation.

In this work, we therefore propose a different approach
where all frames of the videos are used. Instead of detecting
frames of high confidences, we aim to identify changes of
actions in order to divide the videos into segments. Since
for each action change the frames before the change should
be assigned to the previous timestamp and after the change
to the next timestamp, we find the action changes by mini-
mizing the variations of the features within each of the two
clusters of frames. While we can then train the model on
all frames by assigning the label of the timestamp to the
corresponding frames, it does not guarantee that all frames
of an action are effectively used. We therefore introduce a
loss function that enforces a monotonic decrease in the class
probabilities as the distance to the timestamps increases.
This loss encourages the model to predict higher probabili-
ties for low confident regions that are surrounded by high
confident frames and therefore to use all frames and not
only the most distinctive frames.

Our contribution is thus three folded.

1. We propose to use timestamp supervision for the tem-
poral action segmentation task, where the goal is to
predict frame-wise action labels for untrimmed videos.

2. We introduce an approach to train a temporal action
segmentation model from timestamp supervision. The
approach uses the model predictions and the annotated
timestamps for estimating action changes.

3. We propose a novel confidence loss that forces the
model confidence to decrease monotonically as the
distance to the timestamp increases.

We evaluate our approach on four datasets: 50Sal-
ads [38], Breakfast [16], BEOID [7], and Georgia Tech
Egocentric Activities (GTEA) [10]. We show that training

an action segmentation model is feasible with only time-
stamp supervision without compromising the performance
compared to the fully supervised approaches. On the 50Sal-
ads dataset, for instance, we achieve 97% of the accuracy
compared to fully supervised learning, but at a tiny fraction
of the annotation costs. 1

2. Related Work
We briefly discuss the related work for the temporal ac-

tion segmentation task at different levels of supervision.

Fully Supervised Action Segmentation. Temporal ac-
tion segmentation has received an increasing interest re-
cently. In contrast to action recognition where the goal
is to classify trimmed videos [36, 4, 12], temporal ac-
tion segmentation requires capturing long-range dependen-
cies to classify each frame in the input video. To achieve
this goal, many approaches combined frame-wise classi-
fiers with grammars [40, 32] or with hidden Markov mod-
els (HMMs) [21, 17, 19]. Despite the success of these ap-
proaches, their performance was limited and they were slow
both at training and inference time. Recent approaches,
therefore, utilized temporal convolutional networks to cap-
ture long-range dependencies for the temporal action seg-
mentation task [20, 24]. While such approaches man-
aged to generate accurate predictions, they suffer from an
over-segmentation problem. To alleviate this problem, cur-
rent state-of-the-art methods follow a multi-stage architec-
ture with dilated temporal convolutions [1, 41, 27, 15, 14].
These approaches rely on fully annotated datasets that are
expensive to obtain. On the contrary, we address the tem-
poral action segmentation task in a weakly supervised setup.

Weakly Supervised Action Segmentation. Weakly su-
pervised action segmentation has been an active research
area recently. Earlier approaches apply discriminative clus-
tering to detect actions using movie scripts [3, 9]. However,
these approaches ignored the action ordering information
and only focused on distinguishing action segments from
background, which is a common practice for the temporal
action localization task [22, 23]. Bojanowski et al. [3] ex-
tended these ideas to segment actions in videos using tran-
scripts in the form of an ordered list of actions as super-
vision. Recently, many researchers addressed the task by
aligning the video frames and the transcripts using con-
nectionist temporal classification [13], dynamic time warp-
ing [5], or energy-based learning [25]. Other approaches
generate pseudo ground truth labels for the training videos
and iteratively refine them [18, 33, 8, 19]. In [35], a frame-
wise loss function is combined with the Viterbi algorithm

1The source code for our model and the timestamps annota-
tions are publicly available at https://github.com/ZheLi2020/
TimestampActionSeg.



to generate the target labels. While these approaches have
been very successful, they suffer from a slow inference time
as they iterate over all the training transcripts and select the
one with the highest score. Souri et al. [37] addressed this
issue by predicting the transcript besides the frame-wise
scores at inference time. While these approaches rely on
a cheap transcript supervision, their performance is much
worse than fully supervised approaches. In contrast to these
approaches, we propose a higher level of supervision in the
form of timestamps that can be obtained with comparable
effort to the transcript supervision, and yet reduces the gap
to the fully supervised approaches. There is another line of
research addressing the action segmentation task from set-
level supervision [34, 11, 26]. These approaches opt for a
weaker level of supervision at the cost of performance. In
contrast to these approaches, we propose a good compro-
mise between supervision level and performance.

Timestamp Supervision for Recognizing Activities.
Timestamp supervision has not yet received much atten-
tion from the action recognition community. Initial attempts
were inspired by the success of point supervision for se-
mantic segmentation [2]. Mettes et al. [30] apply multi-
ple instance learning for spatio-temporal action localiza-
tion using points annotation on a sparse subset of frames.
Chéron et al. [6] use discriminative clustering to integrate
different types of supervision for the spatio-temporal ac-
tion localization task. Recently, Moltisanti et al. [31] pro-
posed a sampling distribution based on a plateau function
centered around temporal timestamps annotations to train
a fine-grained action classifier. This approach relies on
the classifier response to sample frames around the anno-
tated timestamps and uses them for training. The method
was tested for classifying trimmed videos and also showed
promising results for temporal action localization. Ma et
al. [28] extended the action localization setup by mining
action frames and background frames for training.

3. Temporal Action Segmentation

Temporal action segmentation is the task of predicting
frame-wise action labels for a given input video. Formally,
given a sequence of video frames X = [x1, . . . , xT ], where
T is the number of frames, the goal is to predict a sequence
of frame-wise action labels [a1, . . . , aT ]. In contrast to the
fully supervised approaches, which assume that the frame-
wise labels are given at training time, we consider a weaker
level of supervision in the form of timestamps. In Sec-
tion 3.1 we introduce the timestamp supervision for the tem-
poral action segmentation task. Then, we describe the pro-
posed framework for learning from timestamp supervision
in Section 3.2. Finally, we provide the details of the loss
function in Section 3.3.

Figure 2. The framework of the proposed approach for training
with timestamp supervision. Given the output of the segmentation
model and the timestamps annotations, we generate action labels
for each frame in the input video by estimating where the action
labels change. A loss function is then computed between the pre-
dictions and the generated labels.

3.1. Timestamp Supervision

In a fully supervised setup, the frame-wise labels
[a1, . . . , aT ] of the training videos are available. On the
contrary, for timestamp supervision, only a single frame
for each action segment is annotated. Given a training
video X with T frames and N action segments, where
N << T , only N frames are annotated with labels
ATS = [at1 , . . . , atN ], where frame ti belongs to the i-th
action segment. To annotate timestamps, one can go fast
forward through a video and press a button when an ac-
tion occurs. This does not take more time than annotating
transcripts. Whereas annotating the start and end frames of
each action requires going slowly back and forth between
the frames. As reported in [28], annotators need 6 times
longer to annotate the start and end frame compared to an-
notating a single timestamp. While timestamps are much
easier to obtain compared to the full annotation of the video
frames, they provide much more information compared to
weaker forms of supervision such as transcripts. Fig. 1 il-
lustrates the difference between timestamp supervision and
full supervision.

3.2. Action Segmentation from Timestamp Super-
vision

Given an action segmentation model M and a set of
training videos with timestamps annotations, the goal is to
train the modelM to predict action labels for each frame in
the input video. If the frame-wise labels are available dur-
ing the training, as in the fully supervised case, then it is
possible to apply a classification loss on the output of the
model M for each frame in the input video. However, in
timestamp supervision, only a sparse set of frames are an-
notated. To alleviate this problem, we propose to generate
frame-wise labels for the training videos, and use them as a
target for the loss function as illustrated in Fig. 2.



Detecting Action Changes. Given the timestamps an-
notations ATS = [at1 , . . . , atN ] for a video X , we want
to generate frame-wise action labels Â = [â1, . . . , âT ] for
each frame in that video such that âti = ati for i ∈ [1, N ].
As for each action segment there is an annotated frame,
finding the frame-wise labels can be reduced to finding the
action change between each consecutive annotated time-
stamps. To this end, we pass the input video X to the
segmentation model M, which will be described in Sec-
tion 4.2, and use the output of the penultimate layerH com-
bined with the timestamps annotations to estimate where the
action labels change between the timestamps. To generate
the labels, all the frames that lie between an annotated time-
stamp and an estimated time of action change are assigned
with the same action label as the annotated timestamp as il-
lustrated in Fig. 3. To detect the action change between two
timestamps ti and ti+1, we find the time tbi that minimizes
the following stamp-to-stamp energy function

tbi = arg min
t̂

t̂∑
t=ti

d(ht, ci) +

ti+1∑
t=t̂+1

d(ht, ci+1),

s.t.

ci =
1

t̂− ti + 1

t̂∑
t=ti

ht,

ci+1 =
1

ti+1 − t̂

ti+1∑
t=t̂+1

ht,

ti ≤ t̂ < ti+1,

(1)

where d(., .) is the Euclidean distance, ht is the output of
the penultimate layer at time t, ci is the average of the out-
put between the first timestamp ti and the estimate t̂, and
ci+1 is the average of the output between the estimate t̂ and
the second timestamp ti+1. I.e., we find the time tbi that di-
vides the frames between two timestamps into two clusters
with the minimum distance between frames and the corre-
sponding cluster center.

Forward-Backward Action Change Detection. In (1),
the stamp-to-stamp energy function considers only the
frames between the annotated timestamps to estimate where
the actions change. Nonetheless, if we already have an es-
timate for tbi−1 , then we already know that frames between
the estimate tbi−1

and the next timestamp ti will be assigned
to action label ati . This information can be used to esti-
mate the time of action change for the next action segment
tbi . The same argument also holds if we start estimating the
boundaries in reverse order. I.e., if we already know tbi+1 ,
then frames between ti+1 and tbi+1 can be used to estimate
tbi . We call the former estimate a forward estimate for the
i-th action change, whereas the later is called the backward

Figure 3. Given the timestamps annotations, we first estimate
where the actions change between consecutive timestamps. To
generate the frame-wise labels, all the frames that lie between an
annotated timestamp and an estimated time of action change are
assigned with the same action label as the annotated timestamp.

estimate. The final estimate for tbi is the average of these
two estimates. Formally

tbi =
tbi,FW + tbi,BW

2
s.t.

tbi,FW = arg min
t̂

t̂∑
t=tbi−1

d(ht, ci) +

ti+1∑
t=t̂+1

d(ht, ci+1),

tbi,BW = arg min
t̂

t̂∑
t=ti

d(ht, ci) +

tbi+1∑
t=t̂+1

d(ht, ci+1).

(2)

3.3. Loss Function

Recent fully supervised approaches for action segmenta-
tion use a combination of a classification loss and a smooth-
ing loss [1, 15, 41]. Besides these losses, we further intro-
duce a novel confidence loss for the timestamp supervision.
In the following, we describe in detail each loss function.

Classification Loss. We use a cross entropy loss be-
tween the predicted action probabilities and the correspond-
ing generated target label

Lcls =
1

T

∑
t

−log(ỹt,â), (3)

where ỹt,â is the predicted probability for the target label â
at time t.

Smoothing Loss. As the classification loss treats each
frame independently, it might result in an undesired over-
segmentation effect. To encourage a smooth transition be-
tween frames and reduce over-segmentation errors, we use
the truncated mean squared error [1] as a smoothing loss

LT−MSE =
1

TC

∑
t,a

∆̃2
t,a, (4)

∆̃t,a =

{
∆t,a : ∆t,a ≤ τ
τ : otherwise

, (5)

∆t,a = | log ỹt,a − log ỹt−1,a|, (6)



Figure 4. The confidence loss penalizes increases in the model
confidence for label ati as we move away from the annotated time-
stamp ti.

where T is the video length, C is the number of action
classes, and ỹt,a is the probability of action a at time t.

Confidence Loss. Our approach relies on the model out-
put to detect action changes. Nonetheless, as some frames
are more informative than others, the model confidence
might alternate between high and low values within the
same action segment. Such behavior might result in ignor-
ing regions with low confidence within the segments. To
alleviate this problem, we apply the following loss

Lconf =
1

T ′

∑
ati
∈ATS

 ti+1∑
t=ti−1

δati
,t

, (7)

δati
,t =

{
max(0, log ỹt,ati

− log ỹt−1,ati
) if t ≥ ti

max(0, log ỹt−1,ati
− log ỹt,ati

) if t < ti
,

(8)

where ỹt,ati
is the probability of action ati at time t, and

T ′ = 2(tN − t1) is the number of frames that contributed to
the loss. For the first and last timestamps, we set t0 = t1 and
tN+1 = tN . This loss penalizes an increase in confidence
as we deviate from the annotations as illustrated in Fig. 4.

Enforcing monotonicity on the model confidence has
two effects as shown in Fig. 6. First, it encourages the
model to predict higher probabilities for low confident re-
gions that are surrounded by regions with high confidence.
Second, it suppresses outlier frames with high confidence
that are far from the timestamps and not supported by high
confident regions.

The final loss function to train the segmentation model is
the sum of these three losses

Ltotal = Lcls + αLT−MSE + βLconf , (9)

where α and β are hyper-parameters to balance the contri-
bution of each loss.

4. Experiments
4.1. Datasets and Metrics

Datasets. We evaluate our approach on four datasets:
50Salads [38], Breakfast [16], BEOID [7], and Georgia
Tech Egocentric Activities (GTEA) [10].

The 50Salads dataset contains 50 videos with roughly
0.6M frames, where the frames are annotated with 17 action

classes. The videos show actors preparing different kind of
salads. We use five-fold cross validation for evaluation and
report the average.

The Breakfast dataset contains 1712 videos with
roughly 3.6M frames, where the frames are annotated with
48 action classes. All actions are related to breakfast prepa-
ration activities. We use the standard four splits for evalua-
tion and report the average.

The BEOID dataset contains 58 videos, where the
frames are annotated with 34 actions classes. For evalua-
tion, we use the same training-testing split as in [28].

The GTEA dataset contains 28 videos with roughly 32K
frames, where the frames are annotated with 11 action
classes. For evaluation, we report the average of four splits.

To generate the timestamps annotations, we randomly
select one frame from each action segment in the training
videos. We further evaluate our approach using human and
noisy annotations in Section 4.7. Additional settings are
evaluated in the supplementary material.

Metrics. We use the standard metrics for fully super-
vised action segmentation and report frame-wise accuracy
(Acc), segmental edit distance (Edit) and segmental F1
scores at overlapping thresholds 10%, 25% and 50%.

Baselines. We implement two baselines: a Naive and a
Uniform baseline. The Naive baseline computes the loss at
the annotated timestamps only and does not generate frame-
wise labels. Whereas the Uniform baseline generates the
frame-wise labels by assuming that action labels change at
the center frame between consecutive timestamps.

4.2. Implementation Details

We use a multi-stage temporal convolutional network [1]
as a segmentation model M. Following [39], we use two
parallel stages for the first stage with kernel size 5 and 3
and pass the sum of the outputs to next stages. We train our
model for 50 epochs with Adam optimizer. To minimize the
impact of initialization, only the annotated timestamps are
used for the classification loss in the first 30 epochs, and the
generated labels are used afterwards. The learning rate is
set to 0.0005 and the batch size is 8. For the loss function,
we set τ = 4, α = 0.15 as in [1] and set β = 0.075. As
input for our model, we use the same I3D [4] features that
were used in [1].

4.3. Comparison with the Baselines

In this section, we compare the proposed approach for
action segmentation from timestamp supervision with the
naive and uniform baselines. The results on the three
datasets are shown in Table 1. Our approach outperforms
these baselines with a large margin in all the evaluation met-
rics. While the naive baseline achieves a good frame-wise
accuracy, it suffers from a severe over-segmentation prob-
lem as indicated by the low F1 and Edit scores. This is



(a)

(b)

(c)
Figure 5. Qualitative results on (a) 50Salads, (b) Breakfast, and (c) GTEA datasets. As the naive baseline only trains on the sparse
annotations, it suffers from an over-segmentation problem. While the uniform baseline reduces this problem by uniformly assigning labels
to the frames, the durations of the predicted segments are not accurate and the predictions tend towards a uniform segmentation of the
videos. On the contrary, our approach generates better predictions by utilizing the model output to detect where the action labels change.

because it only uses the sparse timestamps annotations for
training, which leaves a lot of ambiguity for frames without
annotations. Using the uniform baseline reduces the over-
segmentation by uniformly assigning a label for each frame.
However, this results in inferior frame-wise accuracy as the
uniform assignment generates many wrong labels. On the
contrary, our approach utilizes the model predictions to gen-
erate much better target labels, which is reflected in the per-
formance as illustrated in Fig. 5. We also compare the per-
formance of our approach to the fully supervised setup in
Table 1. Our approach achieves comparable performance to
the fully supervised case.

4.4. Impact of the Loss Function

The loss function to train our model consists of three
losses: a classification loss, a smoothing loss, and a con-
fidence loss. Table 2 shows the impact of each loss on
both the 50Salads and the Breakfast dataset. While ei-
ther of the smoothing loss and the confidence loss gives
an additional boost in performance, the best performance
is achieved when both of the losses are combined with the

F1@{10, 25, 50} Edit Acc

50Salads

Naive 47.9 43.3 34.0 37.2 69.6
Uniform 62.9 58.2 42.3 60.4 63.4
Ours 73.9 70.9 60.1 66.8 75.6
Full Supervision 70.8 67.7 58.6 63.8 77.8

Breakfast

Naive 34.1 29.1 20.1 37.4 56.8
Uniform 66.2 56.3 36.4 68.1 51.0
Ours 70.5 63.6 47.4 69.9 64.1
Full Supervision 69.9 64.2 51.5 69.4 68.0

GTEA

Naive 59.7 55.3 39.6 51.1 56.5
Uniform 78.9 72.5 50.9 73.1 56.5
Ours 78.9 73.0 55.4 72.3 66.4
Full Supervision 85.1 82.7 69.6 79.6 76.1

Table 1. Comparison with the baselines on the three datasets.

classification loss with a frame-wise accuracy improvement
of 2.8% and 3.9% on 50Salads and the Breakfast dataset
respectively, and roughly 10% on the F1 score at 50% over-
lapping threshold.

While the smoothing loss forces a smooth transition be-
tween consecutive frames, it does not take the annotations



F1@{10, 25, 50} Edit Acc

50Salads

Lcls 65.7 62.6 50.7 57.7 72.8
Lcls + αLT−MSE 70.1 66.8 55.3 62.6 74.6
Lcls + βLconf 73.2 70.6 60.1 65.2 75.3
Lcls + αLT−MSE + βLconf 73.9 70.9 60.1 66.8 75.6

Breakfast

Lcls 60.3 52.8 36.7 64.2 60.2
Lcls + αLT−MSE 67.5 60.1 44.3 68.9 63.7
Lcls + βLconf 67.6 60.4 43.7 68.0 61.6
Lcls + αLT−MSE + βLconf 70.5 63.6 47.4 69.9 64.1

Table 2. Contribution of the different loss functions on the 50Sal-
ads and Breakfast datasets.

F1@{10, 25, 50} Edit Acc

β = 0 70.1 66.8 55.3 62.6 74.6
β = 0.025 70.9 68.8 57.4 63.4 76.2
β = 0.05 73.1 70.2 58.7 65.4 75.6
β = 0.075 73.9 70.9 60.1 66.8 75.6
β = 0.1 73.2 70.6 60.1 66.1 74.6

Table 3. Impact of β on the 50Salads dataset.

into account. On the contrary, the confidence loss forces
the predicted probabilities to monotonically decrease as the
distance to the timestamps increases. This encourages the
model to have a high confidence for all frames within an
action segment, and yet it suppresses outlier frames that are
far from the annotations and not supported by regions with
high confidence as illustrated in Fig. 6.

To balance the contribution of the different losses, we set
the weight of the smoothing loss to 0.15 as in [1], and the
weight of the confidence loss β = 0.075. In Table 3, we
study the impact of β on the performance on the 50Salads
dataset. As shown in the table, good results are achieved for
β between 0.05 and 0.1.

4.5. Impact of the Energy Function for Action
Change Detection

Our approach generates target labels by estimating
where the action labels change using the forward-backward
estimate as in (2). To analyze the impact of this estimate,
we train another model that directly uses the stamp-to-
stamp estimate (Stamp-to-Stamp (Features)) as in (1). As
shown in Table 4, our approach performs better. We also
tried another variant of the stamp-to-stamp energy function
that maximizes the average probabilities of the action seg-
ments (Stamp-to-Stamp (Prob.)) instead of minimizing the
distances to cluster centers. However, the performance is
worse than the proposed energy function.

4.6. Impact of the Segmentation ModelM

In all experiments, we used a multi-stage temporal con-
volutional architecture based on [1] and [39]. In this sec-
tion we study the impact of the segmentation model on the
performance. To this end, we apply the proposed training
scheme on the original MS-TCN [1] and the recently intro-
duced MS-TCN++ [27]. As shown in Table 5, our approach

(a)

(b)
Figure 6. Impact of the confidence loss. Forcing monotonicity en-
courages the model to have a high confidence for all frames within
an action segment (a). It also suppresses outlier frames with high
confidence (b).

F1@{10, 25, 50} Edit Acc

50Salads

Stamp-to-Stamp (Prob.) 67.5 61.8 48.6 61.1 68.9
Stamp-to-Stamp (Features) 73.4 70.5 59.9 66.7 74.2
Ours 73.9 70.9 60.1 66.8 75.6

Breakfast

Stamp-to-Stamp (Prob.) 65.7 55.9 35.9 68.0 58.8
Stamp-to-Stamp (Features) 66.3 59.6 44.4 67.9 60.1
Ours 70.5 63.6 47.4 69.9 64.1

Table 4. Impact of the energy function for action change detection
on the 50Salads and Breakfast datasets.

Dataset Seg. ModelM F1@{10, 25, 50} Edit Acc

50Salads MS-TCN [1] 71.7 68.7 57.0 64.0 74.7
MS-TCN++ [27] 75.0 71.1 55.8 67.2 72.9
Ours 73.9 70.9 60.1 66.8 75.6

GTEA MS-TCN [1] 79.8 73.3 47.7 76.3 59.3
MS-TCN++ [27] 78.3 72.2 49.1 74.5 62.2
Ours 78.9 73.0 55.4 72.3 66.4

Table 5. Impact of the segmentation model M on the 50Salads and
GTEA datasets.

is agnostic to the segmentation model and performs well
with all these models.

4.7. Comparison with the State-of-the-Art

In this section, we compare our approach with recent
state-of-the-art approaches for timestamp supervision. To
the best of our knowledge, timestamp supervision has not
been studied for the temporal action segmentation task. We,
therefore, compare with similar methods in the context of
action recognition [31] and action localization [28].

Since the approach of [31] assumes the testing videos
are trimmed and does not work for long untrimmed videos,
we replaced their backbone network with our segmentation
model for a fair comparison. To this end, we initialized the
plateau functions around the timestamps annotations of the
training videos and iteratively update their parameters based
on the segmentation model output as in [31]. Results for
the 50Salads, Breakfast, and GTEA datasets are shown in



Supervision Method F1@{10, 25, 50} Edit Acc

Full MS-TCN [1] 76.3 74.0 64.5 67.9 80.7
MS-TCN++ [27] 80.7 78.5 70.1 74.3 83.7
BCN [41] 82.3 81.3 74.0 74.3 84.4
ASRF [15] 84.9 83.5 77.3 79.3 84.5

Timestamps Seg. Model M + plateau [31] 71.2 68.2 56.1 62.6 73.9
Ours 73.9 70.9 60.1 66.8 75.6

Transcripts CDFL [25] - - - - 54.7
NN-Viterbi [35] - - - - 49.4
HMM-RNN [33] - - - - 45.5

Table 6. Comparison with different levels of supervision on the
50Salads dataset.

Supervision Method F1@{10, 25, 50} Edit Acc

Full MS-TCN [1] 52.6 48.1 37.9 61.7 66.3
MS-TCN++ [27] 64.1 58.6 45.9 65.6 67.6
BCN [41] 68.7 65.5 55.0 66.2 70.4
ASRF [15] 74.3 68.9 56.1 72.4 67.6

Timestamps Seg. Model M + plateau [31] 65.5 59.1 43.2 65.9 63.5
Ours 70.5 63.6 47.4 69.9 64.1

Transcripts CDFL [25] - - - - 50.2
MuCon [37] - - - - 47.1
D3TW [5] - - - - 45.7
NN-Viterbi [35] - - - - 43.0
TCFPN [8] - - - - 38.4
HMM-RNN [33] - - - - 33.3
ECTC [13] - - - - 27.7

Sets SCT [11] - - - - 30.4
SCV [26] - - - - 30.2
Action Sets [34] - - - - 23.3

Table 7. Comparison with different levels of supervision on the
Breakfast dataset.

Supervision Method F1@{10, 25, 50} Edit Acc

Full MS-TCN [1] 85.8 83.4 69.8 79.0 76.3
MS-TCN++ [27] 88.8 85.7 76.0 83.5 80.1
BCN [41] 88.5 87.1 77.3 84.4 79.8
ASRF [15] 89.4 87.8 79.8 83.7 77.3

Timestamps Seg. Model M + plateau [31] 74.8 68.0 43.6 72.3 52.9
Ours 78.9 73.0 55.4 72.3 66.4

Table 8. Comparison with different levels of supervision on the
GTEA dataset.

Tables 6-8, respectively. Our approach outperforms [31] on
all datasets with a large margin of up to 13.5% frame-wise
accuracy and 11.8% for the F1 score with 50% overlapping
threshold on the GTEA dataset.

We also compare our approach for timestamp supervi-
sion with other levels of supervision for the temporal action
segmentation task. As shown in Tables 6-8, timestamp su-
pervision outperforms weaker levels of supervision in the
form of transcripts or sets with a large margin. Our ap-
proach provides a good compromise between annotation ef-
fort and performance, and further reduces the gap to fully
supervised approaches.

Timestamp supervision has recently been studied for ac-
tion localization in [28]. In their approach, they use the
model confidence to sample foreground action frames and
background frames for training. To compare with [28], we
use the same setup and the provided human annotations to
train our model and report mean average precision at differ-
ent overlapping thresholds. Table 9 shows the results on the
GTEA and BEOID [7] datasets. Our approach outperforms

mAP@IoU 0.1 0.3 0.5 0.7 Avg

GTEA

SF-Net [28] 58.0 37.9 19.3 11.9 31.0
Ours 60.2 44.7 28.8 12.2 36.4

BEOID

SF-Net [28] 62.9 40.6 16.7 3.5 30.1
Ours 71.5 40.3 20.3 5.5 34.4

Table 9. Comparison with SF-Net [28] for action localization with
timestamp supervision on the GTEA and BEOID datasets.

Fraction Method Acc

0.1 HMM-RNN [19] 60.9
Ours 68.4

0.01 HMM-RNN [19] 58.8
Ours 67.4

Table 10. Comparison with Kuehne et al. [19] on the Breakfast
dataset with semi-supervised setup.

Ma et al. [28] with a large margin of 5.4% average mAP on
GTEA and 4.3% on the BEOID dataset. In contrast to [28]
where only the frames with high confidence are used for
training, our approach detects action changes and generates
a target label for each frame in the training videos.

Finally, we compare our approach with the semi-
supervised setup on the Breakfast dataset proposed in
Kuehne et al. [19]. In this setup, the training videos are
annotated with the transcript of actions and a fraction of
the frames as well. Compared to the timestamp supervi-
sion, this setup provides annotations for much more frames.
Since the timestamps are randomly sampled from the video,
there are sometimes multiple timestamps for one action and
not all actions are annotated as reported in the supplemen-
tary material. As shown in Table 10, our approach outper-
forms [19] with a large margin. While the approach of [19]
relies on an expensive Viterbi decoding during inference,
our approach directly predicts the frame-wise labels.

5. Conclusion

In this paper, we proposed an approach to train a tempo-
ral action segmentation model using only timestamps anno-
tations. Our approach combines the model predictions with
the timestamps annotations for estimating where the action
labels change. We further introduced a confidence loss that
enforces monotonicity on the model confidence. The loss
encourages high confidence values for all frames within an
action segment and suppresses outlier frames. Results on
four datasets show that models trained with timestamp su-
pervision achieve comparable performance to the fully su-
pervised setup. The proposed approach is model agnostic
and can be applied to any segmentation model.
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