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Abstract. Non-Maximum Suppression (NMS) is widely used to remove
duplicates in object detection. In contrast to the end-to-end learning
paradigm, NMS often remains as the only heuristic step that is not
learned. While approaches for learning NMS have been proposed, they
are either designed for the two-stage detector Faster-RCNN or rely on a
separate network. In contrast, learning NMS for one-stage detectors like
SSD is not well investigated. In this paper, we show that even a very
simple rescoring network can be trained end-to-end with an underly-
ing one-stage detector to solve the duplicate removal problem efficiently.
For this, detection scores and bounding boxes are refined from image
features by modeling relations between detections in a Graph Neural
Network (GNN). To deal with the large number of object proposals of
one-stage detectors, we propose a pre-filtering head, which can easily be
employed in arbitrary SSD-like models with a weight-shared box pre-
dictor. Experiments on MS-COCO and KITTI show that our method
improves accuracy compared with other duplicate removal methods at
significantly lower inference time.

Keywords: Non-maximum suppression, object detection, duplicate re-
moval, graph neural network

1 Introduction

Object detection is a fundamental and crucial task in computer vision. In the
deep learning era, most object detection algorithms can be divided into two
different categories: one-stage detectors such as YOLO [17] and Single Shot De-
tector (SSD) [15] or two-stage detectors such as Faster-RCNN [18], Mask-RCNN
[5] or R-FCN [2]. In real-time applications, SSD and its variants MobileNet [8],
RetinaNet [13], EfficientDet [22] have become more and more popular due to
their efficiency, e.g. in robotics or automated driving. Regardless of the detec-
tion pipeline, the object detectors usually generate multiple detections for a
single object. Therefore, Non-Maximum Suppression (NMS) is employed to re-
move these duplicates. NMS is a heuristic algorithm that solely relies on the
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Fig. 1. We propose an end-to-end duplicate removal network for SSD. To deal with the
large amount of raw detections (top), the network pre-filters all detections (middle).
These are fed into a GNN to pass information between overlapping detections. Finally,
the network performs a rescoring and a box refinement for each candidate, aiming to
produce only one high-scoring and precise box for each instance (bottom). The opacity
of boxes is proportional to the score. Different categories are depicted in different colors.

score and overlap between detections as criterion for removal. In order to make
use of the meaningful image features of the detection system, it is desirable to
replace the hand-engineered NMS by a learnable component.

Following the deep learning paradigm of the end-to-end optimization, learning-
based duplicate removal approaches have been proposed. Most of them use a
separate network which processes raw detections with handcrafted features from
an existing object detector [6], [7], [16]. Usually, these duplicate removal methods
are not directly applicable for SSD-like architectures and, thus, can hardly be
used in real time applications. The reasons for this are mainly due to two chal-
lenges: First, SSD provides significantly more raw detections (top image of Fig. 1)
compared to its two-stage counterpart. Since all existing approaches model rela-
tions between detections, the computational complexity increases quadratically
with the number of input detections. Second, image features in SSD are of lower
dimensionality. Thus, they are less discriminative when embedding them into
the input of a separate duplicate removal network. Since especially real time
applications demand for the use of SSD architectures, these challenges have to
be overcome in order to employ true end-to-end detectors.

In this paper, we propose to learn the duplicate removal for SSD architec-
tures. To cope with the large amount of candidates, we first introduce a learnable
pre-filtering module that filters the highly overlapping boxes from the raw de-
tections of SSD in an early stage (middle image of Fig. 1). We then model
interactions between the top-K filtered detection candidates to eliminate those
corresponding to the same object. The set of detections is regarded as an undi-
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rected graph, where an edge exists between two detections (nodes) if they over-
lap. In our work, node features are propagated along the edges in the graph using
a Graph Convolutional Network (GCN) [11] in order to obtain a single refined
and rescored detection per object (bottom image of Figure 1). Although existing
approaches for duplicate removal also model these relationships, they either rely
on a deep network architecture with a long inference time [6], [7], [16] or treat
the detections as a fully-connected graph [9], [16]. In contrast, our approach is
much more efficient, and it is thus applicable to real-time sensitive applications.
To train the network, we propose to use a bipartite matching that uniquely as-
signs ground-truth annotations to detections. It considers the localization and
classification quality simultaneously instead of using a greedy matching as in
existing related works.

We showcase the effectiveness of our proposed duplicate removal approach
with two popular SSD models: EfficientDet [22] and RetinaNet [13]. Extensive
experiments on COCO [14] and KITTI [4] show that our efficient approach
achieves still a generally higher accuracy than more expensive duplicate removal
methods. While maintaining the accuracy, our approach has an extremely small
complexity and does not require any post-processing other than thresholding.
Consequently, it runs significantly faster: the inference of the entire model is
24.5% and 19.5% faster than NMS for EfficientDet-D0 and RetinaNet-ResNet50,
respectively, while achieving better mAP.

2 Related Work

As of today, standard detection networks still employ manually engineered du-
plicate removal such as NMS [15], [18], [22]. In order to remove it, two categories
of approaches exist. Either, the detector is designed to produce duplicate-free
detections or they are removed by an additional network component.

NMS-free object detection Networks that can operate without an explicit
NMS need to suppress duplicates within their detection pipeline. In the field of
human detection in crowded situations, [20] proposed a pipeline with a CNN
backbone as encoder for extracting visual features and an LSTM controller as
decoder for generating the set of detections iteratively. Inspired by [20] and
[25], DETR [1] and its successors [28] [19] generate the detection set directly by
implicit relationship modeling using a Transformer encoder and decoder after a
CNN feature extractor. CenterNet [27] identifies local maxima in the centerness
score, which effectively is a NMS for box centers. Our approach also learns
an additional score, but it identifies non-duplicate boxes using a global loss
based on a one-to-one target assignment. OneNet [21] uses a combination of a
classification and localization loss as matching cost and a one-to-one matching
for target assignment. While we also consider both classification and localization
for target assignment, the features in our approach are updated by explicitly
modeling the relationship between detections.
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Learning duplicate removal Instead of the classical NMS, learnable duplicate
removal techniques have been proposed. They can be divided into two groups.
The first group employed a separate network that processes detection results
from an object detector. GossipNet [7] uses handcrafted detection pair features
as input and updates the representation of every detection by iterative communi-
cation between every detection pair. [16] also encodes the handcrafted features
from raw detections as input and rescores detections with bidirectional RNN
and self-attention. However, the network architectures of above methods are
complicated and not shown to be applicable to SSD-like architectures such as
RetinaNet [13] or EfficientDet [23]. A second line of these works proposed end-
to-end trainable networks. For two-stage detectors, Relation Networks [9] allow
learning duplicate removal using an object relation module based on scaled dot-
product self-attention [25], which is easily attached to the refinement network in
Faster-RCNN. For one-stage detectors, [26] proposed a positive sample selector
by attaching a new head in FCOS [24] for eliminating the NMS. In this work, we
show that a learnable duplicate removal network can also be added to SSD-like
architectures and trained end-to-end.

3 Method

3.1 System overview

An overview of our proposed end-to-end learned duplicate removal approach for
a Single Shot Detector (SSD) is shown in Figure 2. As a central concept, we
treat detections as nodes in a graph and modify their predictions through a
Graph Neural Network (GNN). For this, we start off with SSD as the detec-
tion architecture. To reduce the number of detection candidates, we attach a
pre-filtering head to the classification branch, which produces a score offset for
all detections followed by a top-K sampler. The filtered detections are then fed
into a Graph Convolutional Network (GCN), which updates the node represen-
tations by message-passing and finally outputs a score offset and box refinement
parameters. During training, the final detections are matched one-to-one with
the ground-truth annotations using the Hungarian algorithm.

3.2 Local candidate pre-filtering

Given a standard SSD, detections are generated based on an evenly distributed
grid of prior boxes with different locations, sizes, and aspect ratios for differ-
ent feature map scales. Therefore, the number of detection candidates in SSD
is by orders of magnitude larger than in Faster-RCNN, which pre-filters object
proposals in the region proposal network using NMS. As the learned duplicate
removal relies on the relationship of overlapping detections and the computa-
tional overhead explodes when the number of proposals increases, a candidate
sampling for downstream duplicate removal is necessary. A straight-forward fil-
tering is a top-K algorithm which keeps the K detections with highest scores
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Fig. 2. An overview of our proposed network architecture. First, the base SSD model
produces multi-scale feature maps using a backbone network including some feature
pyramid network (FPN). Raw detections are generated by a weight-shared box pre-
dictor. The pre-filtering is done by a rescoring using an additional head and a top-K
selection. The graph adjacency is constructed based on the overlap between detections,
while initial node features are extracted from the feature map. The graph data is then
processed by GCN layers that enable message passing between neighboring detections.
The updated node representations are projected into a score offset and four box pa-
rameters. For training, the rescored and refined detection sets are matched uniquely
with ground truth using a bipartite matcher.

because most detections in SSD contain only background. However, since high
scoring detections may be highly redundant, this might discard positives with
relatively low confidence. Classical NMS, on the other hand, is able to keep these
by processing all detection candidates. For this reason, we aim to reduce the can-
didates to a reasonable amount while keeping as many potential true positives
as possible.

Pre-filtering head Similar to previous learned NMS approaches [7], we con-
sider the filtering as a learnable rescoring problem. To this end, we add a network
which produces a score offset to indicate whether a detection candidate should
be removed. Inspired by [26] for FCOS [24], we attach an additional head to the
classification subnet. Parallel to the last convolutional layer that generates C
binary classifications zclsc for every anchor in SSD, the new head predicts a class-
agnostic confidence ∆zpre by a single 3×3 convolutional layer. C corresponds to
the number of categories. Given a feature map Fs ∈ RHs×Ws×CF with downsam-
pling rate s, the output dimension of the pre-filtering head is Hs×Ws×A where
A is the number of anchors on every pixel. The rescoring is done by an addition
in the logit space zprec = zclsc + ∆zpre. All the C classes share the same offset
for simplicity and efficiency. A top-K algorithm selects the best K detections for
each class based on the new score after sigmoid activation sprec = σ(zprec ).
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Training objective The pre-filtering head is trained in order to remove the
most obvious duplicates. For this, the convolutional layers in the box predictor
and the pre-filtering head have only a local receptive field for identifying objects.
In this case, the highly overlapping duplicated detections (as observed in the top
image of Fig. 1) that stem from surrounding locations can be easily recognized
by the pre-filtering network. To generate its training targets, we use a class-
agnostic NMS with a high IoU threshold T1 = 0.9. By setting a high threshold
T1, the outputs of the NMS, which are used as supervision to train the pre-
filtering head, are more likely to cover all true positives while only discarding
highly overlapping duplicates. Let yi ∈ {0, 1} indicate whether a certain box
i shall be kept, defined by the class-agnostic NMS. The pre-filtering head is
then trained with a Binary Cross Entropy loss Lpre =

∑
i BCE(∆zprei , yi). This

training objective produces a sparser set of detections, which lead to a sparser
adjacency matrix with less locally fully-connected clusters when constructing
the graph for the proposed approach for NMS. This is helpful to mitigate the
problem caused by over-smoothing [12] in GCNs.

3.3 Learning NMS based on GCN

Graph construction Let G = (V,E) be a graph that we construct from detec-
tion candidates, where V is the set of nodes and E is the set of edges between
them. The nodes V correspond to the top K detections after pre-filtering. An
adjacency matrix A ∈ {0, 1}K×K represents the edges between nodes. For a pair
of detection boxes (bi, bj) from V , an edge exists (i.e. Aij = 1) if IoU(bi, bj) > 0
and otherwise Aij = 0. Based on every filtered detection, we trace the location
(xs, ys) in its corresponding feature map Fs at scale s and extract the feature
vector fA ∈ RCF at this location as image feature. Since SSD generates multi-
ple detections on every feature map pixel, detections that stem from the same
pixel share the same image feature. For a more discriminative feature vector,
we follow Relational Network [9] to use a rank feature. Concretely, all the K
detections are sorted in descending order and each detection is given a rank r
in [1,K]. This scalar is then embedded into a rank feature fR ∈ RCF using a
positional encoding as demonstrated in [25]. Both feature vectors are projected
into a CN -dimensional space and then added to build the initial node feature
f = WRfR +WAfA, where WR and WA are learnable weights. We found that
additional handcrafted features like box coordinates, score or box overlap did
not improve the accuracy of our approach. Because image features are extracted
from different feature maps, an SSD architecture with a weight-shared box pre-
dictor is necessary, which is able to produce semantically equal feature maps so
that the extracted feature vectors are comparable in the same graph.

Network architecture We employ the simple Graph Convolutional Network
[11] for updating detection representations by propagating messages between
overlapping detections. Given the adjacency matrix A ∈ RK×K and an input
feature matrix F ∈ RK×CN , a Graph Convolutional Layer generates the output
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feature matrix F′ ∈ RK×C
′
N by:

F′ = D−1/2AD−1/2FW + b, (1)

where D denotes the degree matrix of A with Dii =
∑

j Aij . W and b are
the learnable weights and bias term, respectively. Note that we do not add the
self-loop by Â = A + I because our IoU-based adjacency matrix includes it
naturally. After message propagation from stacked Graph Convolutional Layers
in Equ. (1), the node representations contain information on its neighborhood.

We then use a linear classifier to predict a score offset based on the updated
feature representations. In a multi-class setting (C > 1), the same network is
operated on all classes independently and thus generates the class-specific score
offset ∆zgcnc for class c. Together with the class-agnostic offset from pre-filtering,
the final score of a detection for category c is generated by adding the score offsets
to the score of SSD (zclsc ) in logit space followed by a sigmoid function: sc =
σ(zclsc +∆zpre +∆zgcnc ). The scores of duplicated boxes are strongly decreased
after rescoring so that the remaining high-scoring boxes are identified as true-
positives using a score threshold.

When solely applying a rescoring, a detection box with highest updated score
might have an imperfect localization. Combined with our matching strategy
(Sec. 3.4), a confident prediction with insufficient precise localization will be
less likely to be matched. To solve this problem, a box refinement can be ap-
plied which benefits from the information of neighboring duplicated detections
in message passing. Therefore, we add an additional fully-connected layer to pre-
dict, parallel to the score offset, four box coordinate offsets {∆x,∆y,∆w,∆h}
according to the box encoding in Faster-RCNN [18]:

∆x = (x′ − x)/w, ∆y = (y′ − y)/h, ∆w = log(w′/w), ∆h = log(h′/h), (2)

where {x, y, w, h} are bounding box parameters from SSD and {x′, y′, w′, h′}
represent the refined bounding box.

3.4 Training

Target assignment with bipartite matching The message passing network
outputs a set of detections with new scores and refined boxes but without chang-
ing the number of detections K, which is typically much larger than the number
of ground truth objects N . For training, we seek an optimal assignment of a
ground-truth object to the best detection determined by a combination of clas-
sification and localization accuracy. Most previous works [7], [9], [16] follow the
simpler evaluation pipeline of Pascal VOC [3] or MS-COCO [14] for target as-
signment. This matching algorithm first sorts all detections in descending order
and then greedily picks the detection with highest score for a ground-truth in-
stance, when its IoU with this ground-truth box exceeds a pre-defined threshold.
However, the greedy matching selects boxes based on the classification score at
an unchanged IoU level without further consideration of localization.
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Following the works with set prediction [20], [1], we introduce a pairwise
matching cost which consists of a classification and a localization cost balanced
with weights α and β:

Lij(di, yj) = −1
[
IoU(b̂i, bj) > T2

] (
αŝi + βIoU(b̂i, bj)

)
, (3)

given the classification score ŝi and box b̂i of detection di as well as a ground-
truth annotation yj with a bounding box bj . The parameter T2 is an IoU thresh-
old that controls the positive and negative samples, similar to the one used for
the anchor matching in SSD. The optimal matching between the set of detec-
tions {di}K and ground truths {yj}N can be represented with an assignment
matrix X ∈ {0, 1}K×N , where Xij = 1 indicates a matching between di and yj .
In a bipartite matching, each row of X is assigned at most to one column and
vice versa. The optimal assignment X which minimizes the overall cost

Lmatch = min
X

∑
i

∑
j

LijXij (4)

can be efficiently found by the Hungarian algorithm. With the matching cost in
Equ. (3), we prefer to select a box with both high score and precise localization.

Overall training objective We train our proposed network together with the
classification loss Lcls and the localization loss Lloc of SSD. We use the focal
loss [13] and smooth-L1 loss as classification loss Lnms,cls and localization loss
Lnms,loc in our learnable NMS network, respectively. Similar to the localization
loss in SSD, the loss term Lnms,loc is only calculated for the positive (matched)
samples. Note that we use the final score sc after rescoring as the prediction
in the focal loss, thus the gradient from Lnms,cls also flows into the pre-filtering
head and classification subnet. The overall training objective is

L = λ1(Lcls + Lloc) + λ2Lpre + λ3Lnms,cls + λ4Lnms,loc, (5)

where λ1, λ2, λ3, λ4 are weights for each loss term.

4 Experiments

4.1 Implementation Details

We show detection results on the MS-COCO [14] and KITTI 2D Object Detec-
tion [4] datasets. To avoid training instability caused by gradient domination of
the duplication removal components at the beginning of the training, we train
our model in two stages: first, the vanilla SSD model is trained alone. In the
second stage, our learnable NMS network is attached to the base SSD network
and the whole network is trained jointly according to Equ. (5) with a smaller
learning rate. For a fair comparison, we compare our approach to a vanilla SSD
that is trained for the same amount of epochs as the two stages together.
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Table 1. Results on MS-COCO val and test-dev. We compare our approach with NMS
and GossipNet [7]. AP50 and AP75 are AP at 50% IoU and 75% IoU. The inference
time corresponds to the entire process including pre- and post-processing and we also
show the inference time of the GossipNet alone in brackets.

base model method
val test-dev

time [ms]AP AP50 AP75 AP AP50 AP75

EfficientDet-D0
NMS 31.6 50.0 33.3 32.0 50.5 33.8 47.3

GossipNet 31.6 49.7 33.7 31.5 49.9 33.7 166.1(131.1)
ours 32.7 49.9 35.9 32.7 49.8 36.1 35.7

RetinaNet-R50
NMS 34.4 52.1 36.8 34.2 51.7 37.2 59.7

GossipNet 34.7 52.2 37.7 32.0 49.9 34.3 154.2(107.1)
ours 34.7 50.8 38.7 34.6 51.0 38.5 48.0
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our approach and classical NMS. We keep
the top 100 detections for visualization.
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To validate the generalization ability, we use two different SSD models for
evaluation: EfficientDet-D0 [22] and RetinaNet-ResNet50 [13]. The numbers of
initial node feature channels CN and GCN output channels C

′

N are always set

to CN = C
′

N = 4CF , where CF corresponds to the number of channels of the
feature map in the base SSD model. We stack only one GCN layer for EfficientDet
and two GCN layers for RetinaNet. Furthermore, we use K = 300, T1 = 0.9,
T2 = 0.7 and λ1 = λ2 = λ3 = λ4 = 1.0 for all baseline models.

4.2 MS-COCO Experiments

MS-COCO is a challenging object detection dataset with 80 different categories.
There are about 118k images in the train set, 5k images in the val set and 20k
images in the test-dev set. All models are trained on 4 NVIDIA Tesla V100-
PCIE-16GB GPUs with SGD. The batch sizes are 48 for EfficientDet-D0 and
16 for RetinaNet-ResNet50. A momentum of 0.9 and cosine learning rate de-
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cay schedule are used for both stages. For EfficientDet, we train the backbone
detection network for 300k steps with base learning rate 0.08 in the first stage
and a further 100k steps with a base learning rate 0.015 in the second stage. For
RetinaNet, the base learning rate is 0.01 for the first 200k steps and 5×10−4 for
the next 120k steps. Unless mentioned otherwise, ablation studies are performed
on the val set with the EfficientDet-D0 backbone.

Comparison with baselines

Choice of baselines We first compare our approach with other duplicate removal
methods using the same backbone network architectures. For a fair comparison,
we train all networks with the same setup as explained above. To ensure valid-
ity of the baseline performance, we built our method based on the TensorFlow
Object Detection API [10] and used their EfficientDet and RetinaNet implemen-
tation trained with the same hyperparameters as our baselines. Note that our
best EfficientDet baseline falls 2.6% short on test-dev compared to the numbers
reported in the original paper [22]. This is caused by our smaller batch size (48
vs. 128) and less training epochs (160 epochs vs. 300 epochs). Since we aim to
evaluate the performance improvements of different NMS approaches, this does
not limit the comparison since all approaches are trained in the same way.

We select the standard NMS with an IoU threshold of 0.5 as a baseline.
We also compare to GossipNet [7] using the code provided by the authors. As
input, GossipNet takes the same number of raw detections from SSD as our
approach (K = 300) since it performed better than providing more detections
to GossipNet. Other hyperparameters remain unchanged. The comparison on
the COCO val and test-dev sets are shown in Table 1.

Performance For EfficientDet, our approach improves 1.1 percentage points on
val and 0.7 on test-dev compared with NMS. It is worth mentioning that our
approach achieves a significant improvement of AP75, which can be attributed to
our localization refinement loss and position-aware matching cost for the target
assignment. We can also observe significant improvements at relatively high IoU
thresholds (AP@0.70 and AP@0.80) in the precision-recall curves in Figure 3,
which validates the better localization accuracy of our approach. While Gossip-
Net achieves an improvement of AP for Faster-RCNN by 0.8% on COCO test-dev
in our reproduced results, it does not outperform the standard NMS when ap-
plied to EfficientDet. The performance gain of our approach for RetinaNet is
modest compared to the gains for EfficientDet. We argue that RetinaNet has
already achieved a better localization quality than EfficientDet (3.4% AP75 vs.
1.2% AP50 improvement on test-dev) and thus the potential of AP improvement
at a higher IoU threshold is smaller. However, our approach still performs bet-
ter than the NMS baseline on both sets. It is noticed that, although GossipNet
achieves the same AP as our method on val, the performance decreases by a
large margin on test-dev, which indicates limited generalization. A qualitative
comparison with classical NMS is shown in Figure 4. In the first example, clas-
sical NMS produces a duplicate box between the second and third person from
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Table 2. Impact of number of GCN lay-
ers (L) and channels of initial features
(CN ). The number of parameters and
FLOPs include the node feature genera-
tion and final dense layers. We also show
the number of parameters and FLOPs of
the base model EfficientDet-D0.

L CN AP AP50 AP75 Params FLOPs

0 256 30.2 47.4 33.2 83.72k 0.050B
1 256 32.7 49.9 35.9 149.51k 0.136B
2 256 32.4 49.4 35.3 215.30k 0.221B
3 256 32.3 49.4 35.4 281.09k 0.307B

1 64 32.5 49.8 35.6 29.09k 0.027B
1 128 32.4 49.6 35.6 58.37k 0.058B
1 512 32.5 49.8 35.6 430.09k 0.350B

EfficientDet-D0 3.9M 2.5B

Table 3. Impact of the weights for the loss
terms and the modules for pre-filtering and
localization refinement. λ1, λ2, λ3 and λ4

are the weights of the different loss terms in
Equ. (5). – indicates that the corresponding
module is not used.

Ablation λ1 λ2 λ3 λ4 AP AP50 AP75

full model 1.0 1.0 1.0 1.0 32.7 49.9 35.9

influence
of pre-
filtering

1.0 0.5 1.0 1.0 32.4 49.3 35.6
1.0 0.3 1.0 1.0 32.5 49.7 35.8
1.0 0.1 1.0 1.0 32.3 49.0 35.5
1.0 – 1.0 1.0 31.4 48.0 34.4

influence
of loc.

refinement

1.0 1.0 1.0 0.5 32.2 49.6 35.5
1.0 1.0 1.0 0.3 31.9 49.4 35.0
1.0 1.0 1.0 0.1 31.4 48.9 34.2
1.0 1.0 1.0 – 30.7 48.4 33.6

right, while our approach is able to suppress that box in the crowded scene. In
the second example, our method is able to recover low-scoring detections after
rescoring.

Runtime The last column of Table 1 shows the inference time of the entire
model including pre- and post-processing on a NVIDIA RTX 2080Ti GPU. Our
approach reduces inference time by 24.5% and 19.5% for both models compared
to using NMS, thus further accelerates the efficient SSD model and increases
the ability to be embedded into real-time applications. The inference time of the
pure GossipNet model without considering SSD is shown in the bracket which
is significant longer (> 100ms) due to its complex architecture.

Ablation study

Impact of the GCN architecture An ablation study of the number of layers in
the GCN architecture for the EfficientDet-D0 base model is shown in Table 2.
We observe that the network does not need a deep architecture. One GCN layer,
L = 1, provides the best performance. This may be caused by the over-smoothing
in GCNs if too many layers are stacked. In addition, the message from one-
hop neighbors are most important for duplicate removal. Without GCN layers
(L = 0), the rescoring and refinement are made using the initial node features.
This leads to a significant AP drop by 2.5%, which validates the importance
of modeling the relations of detections for duplicate removal. For the number of
channels, 256 shows the best performance. More learnable parameters do not lead
to a better performance. According to the number of parameters and FLOPs,
our model performs the duplicate removal and refinement with a minimal time
and memory overhead compared to the EfficientDet-D0 model.
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Table 4. Results on KITTI test set. The subscription E, M, H corresponds to Easy,
Moderate and Hard, respectively.

Car Pedestrian Cyclist
APE APM APH APE APM APH APE APM APH

NMS 76.21 52.92 43.38 52.32 39.46 35.60 35.72 23.07 20.54
ours 78.55 61.93 53.72 51.24 38.40 35.24 34.13 22.43 19.65

Proposed modules Table 3 shows an evaluation of the pre-filtering and local-
ization refinement by decreasing its corresponding loss weights until it is fully
disabled. The performance drop is relatively small when decreasing the pre-
filtering weight λ2, as shown in rows 2-5. This can be attributed to the gradient
flow from the NMS classification loss Lnms,cls into the pre-filtering head, which
jointly optimizes the pre-filtering ability. By disabling the candidate pre-filter,
the mAP drops by 1.3%. We see that the AP of our approach after disabling
pre-filtering (31.4%) is close to GossipNet (31.6% in Table 1), while both setting
simply selects the top-K boxes with highest SSD scores as input. This shows an
interpretation of the performance gap between GossipNet and our approach and
indicates the importance of our pre-filtering method. In rows 6-9, we gradually
decrease the weight of the NMS localization refinement loss λ4 which also de-
creases performance. A reason for the performance drop is the matching cost that
requires a high localization quality. It also reveals that rescoring alone cannot
guarantee that high-scoring detections also have the best localization.

4.3 KITTI Experiments

For the KITTI 2D Object Detection Benchmark, we use EfficientDet-D0 trained
on one single GPU with a batch size of 8 as baseline. The training schedule
consists of first 120k iterations with a base learning rate of 0.005 for training
the vanilla SSD and then 40k iterations with a base learning rate of 0.0005
for training the entire model. All the other settings are the same as for the
experiments on MS-COCO. The results on the KITTI test set are shown in
Table 4. For car detection, we observe a dramatic performance improvement
against classical NMS: For Moderate and Hard, our approach improves the AP
by around 10 percentage points. This can be attributed to the frequent occlusion
and truncation of these objects in the traffic scenarios (e.g. closely parking cars),
where our learning-based approach is able to deal with the crowded situation.
For pedestrians and cyclists, however, the detection performance drops slightly
when applying our approach. The reason lies in KITTI’s evaluation protocols for
different categories: AP70 is used for car but AP50 for pedestrian and cyclist. As
shown in Fig. 3, our method outperforms NMS at AP70 but not at AP50. Note
that AP70 is a more accurate and difficult measure than AP50.
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5 Conclusion

In this paper, we proposed a novel learned duplicate removal network which can
be easily embedded into SSD-like models and trained end-to-end. For duplicate
removal, detection candidates are treated as nodes in a graph. Their relationship
is processed by a Graph Convolutional Network (GCN) to reason about depen-
dencies and suppression. In order to reduce the amount of candidates within this
graph, a simple learnable pre-filtering head was introduced. Experimental eval-
uations showed that the proposed network outperforms classical NMS and other
duplicate removal methods while at the same time reducing inference time sig-
nificantly. Consequently, our work removes the last hand engineered component
from SSD. The resulting architecture forms an entirely learned object detection
pipeline within realtime constraints.
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27. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint
arXiv:1904.07850 (2019)

28. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020)


	End-to-End Single Shot Detector using Graph-based Learnable Duplicate Removal

